
Stratification and Internal Waves in
lakes and reservoirs:

Theory, Experiments, Modeling, and Applications

Rafael de Carvalho Bueno
Tobias Bleninger

Andreas Lorke

February 22, 2024





Contents

1 Introduction 5

2 Stratified Flows 11
2.1 Stratified Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Properties that control water density . . . . . . . . . . . . . 13
2.1.2 Stratification in natural water bodies . . . . . . . . . . . . . 17

2.2 Theory of Stratified Flows . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Hydrostatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Momentum equation . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 The vorticity on internal wave analysis . . . . . . . . . . . . 32

2.3 Introduction to turbulent flow . . . . . . . . . . . . . . . . . . . . . 33
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Physical Limnology 45
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Experimental Methods: Laboratory, numerical and Field Observations 47
4.1 Laboratory experiments . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Setup and Wavemaker . . . . . . . . . . . . . . . . . . . . . . 51
4.1.3 Synthetic Schlieren Technique . . . . . . . . . . . . . . . . . 53

4.2 Field measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Measurement Devices . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Numerical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.1 Modeling of heat transport: Delft3D-FLOW . . . . . . . . . 61

4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.1 Using Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 Temperature probe . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.3 Conductivity probe . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Interwave Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Signal and Data processing 69
5.1 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Thermocline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

iii



iv CONTENTS

5.4 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 Zero-padding . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.3 Windowed Fourier Transform . . . . . . . . . . . . . . . . . . 76
5.4.4 Overlapping process . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.5 Non-stationary Signals . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Advancing processing . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.1 Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . 84
5.5.2 Phase and Coherence Analysis . . . . . . . . . . . . . . . . . 85
5.5.3 Significance level . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.4 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Applications in physical limnology perspective . . . . . . . . . . . 92
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Interfacial Wave 97
6.1 Free surface wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Small-amplitude solution . . . . . . . . . . . . . . . . . . . . 98
6.1.2 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.1.3 Energy transport and Group velocity . . . . . . . . . . . . . 107
6.1.4 Stokes drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.1.5 Kelvin waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Interfacial wave in a two-layer system . . . . . . . . . . . . . . . . . 113
6.2.1 Solution for shallow water . . . . . . . . . . . . . . . . . . . . 114
6.2.2 Non-hydrostatic solution . . . . . . . . . . . . . . . . . . . . 117
6.2.3 Interfacial wave energy . . . . . . . . . . . . . . . . . . . . . 121
6.2.4 Interfacial seiche . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.5 Fundamental internal seiche amplitude . . . . . . . . . . . 125
6.2.6 Interfacial seiche affected by Earth’s rotation . . . . . . . . . 128

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Internal Wave in Continuous Stratified Fluid 133
7.1 Internal Seiche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.1.1 Hydrostatic three-layer model . . . . . . . . . . . . . . . . . 135
7.1.2 Hydrostatic multi-layer model . . . . . . . . . . . . . . . . . 136
7.1.3 Continuous stratification non-hydrostatic model . . . . . . 137

7.2 Lake mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2.1 Internal seiche . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2.2 internal wave damping . . . . . . . . . . . . . . . . . . . . . 149
7.2.3 Entrainment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.3 Lake number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.3.1 Relationship between Wedderburn number and Lake number 162

7.4 Wind resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.5 Internal seiche degeneration and Internal wave spectra . . . . . . 164

7.5.1 Internal wave damping . . . . . . . . . . . . . . . . . . . . . 165
7.5.2 Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



CONTENTS v

7.5.3 Nonlinear mechanisms . . . . . . . . . . . . . . . . . . . . . 167
7.5.4 Supercritical Flow . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.5.5 Degeneration diagram . . . . . . . . . . . . . . . . . . . . . . 170
7.5.6 Internal wave spectra . . . . . . . . . . . . . . . . . . . . . . 172

7.6 Laboratory Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.7 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.8 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8 Introduction to Gravity currents 177
8.1 The constant volume lock release . . . . . . . . . . . . . . . . . . . 178

8.1.1 Acceleration phase . . . . . . . . . . . . . . . . . . . . . . . . 179
8.1.2 Slumping phase . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.1.3 Self-similar phase . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.1.4 Viscous phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 184





How to use the book

This book presents a complete understanding of the fundamental concepts of
lake mixing and internal wave generation in thermally stratified lakes and reser-
voirs. Readers will learn how internal waves in thermally stratified lakes and
reservoirs are identified and analyzed, understanding all concepts related to
spectral analysis and internal wave models, including a general overview of the
historical developments responsible for revealing the beauty of the internal wave
mechanisms. Readers will also have access to practical applications, similar to the
problems faced by scientists. This book also introduces the idea of fluid mechan-
ics applied to stratified systems and can be used to introduce some advanced
concepts of fluid mechanics, which can be easily followed by undergraduate and
graduate students, field engineers, researchers, or lake and reservoir managers
and regulators.
Pre-requisites: Knowledge of the undergraduate level of Environmental Fluid
Mechanics is essential. This includes topics such as those from conventional
Fluid Mechanics courses, but also those from Environmental Engineering appli-
cations and/or Transport Phenomena, including substance and heat transport
and mixing.

Additionally, we strongly recommend knowledge from course(s) on Turbulent
Diffusion and Mixing, usually offered at graduate level. Topics should include
mixing and transport processes in unstratified systems (without density effects),
such as turbulent shear flows and dispersion, with a focus on the derivation
and solutions of the advection-diffusion equation, including turbulence and
dispersion effects.

Recommended books for acquiring graduate-level pre-requisite knowledge
are:

• Heide Nepf MIT

• Scotts book combined with Gerhards lecture notes from EFM courses

• Fischer, chapter,

• Environmental Transport and Fate, 2012, Benoit Cushman-Roisin (free pdf
download http://www.dartmouth.edu/~cushman/courses/engs43.html)

Not covered: Even though, highly related to stratified flows, this book does
not cover topics on Jets and Plumes or outfall related applications. On one hand,
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because completely new concepts would need to be covered, and on the other
hand, because already good books are available here for. Recommended reading
in this respect is the following:

• Chapter from EFM

• My Thesis

• Book from Desal?

• Book by Phil Roberts

For specific (and advanced) topics on environmental fluid mechanics applica-
tions, we recommend Joe Fernando for all types of mixing and transport in envi-
ronmental fluid systems.

Objective: Our main goal was to have a textbook for teaching and learning.
We did not want another compendium of research articles or like (Web of Science,
ResearchGate, GoogleScholar, and others do a good job with their search engines),
but really something to study for students and provide help for teachers to set up
simple experiments and learning stratified flows.

Publishing format: Open access format would be great. However, most
students here (how it is nowadays in Europe or China?) still study with printed
books or study materials, and I myself like to have a printed version too, but
I might be old fashioned already. Of course, it could be the printed pdf, this
would be fine for me too. Are your students using pdfs only or do they work
with printed books? And what about university libraries? In Brazil, they still
acquire lots of printed books, making them available to students. Thus, the only
advantage of professional publishers is having a printed version, which is easily
buyable in stores, and having an ISBN. We have seen that Springer (https://www.
springeropen.com/books) also offers open access, but probably for considerable
costs (minimum 1500 euros). An option could be publishing through university
editors (university press). UFPR has one (https://www.editora.ufpr.br/), but
very bad English information, and burocratic and intense peer review. Or using
Amazon Publishing (https://www.amazon.com/gp/education-publishing), looks
very simple, includes perfect marketing and ISBN, and print-on-demand, but
needs to be commercial (at least 1 USD per book). Or just put the pdf with all
additional files on a webpage, which can be updated whenever needed. UFPR
has free hosting for that. Or through the water associations (e.g. IAHR or IWA,
https://www.iwapublishing.com/).

Additional material This book provides a key link to additional materials,
including up-to-date content, data sets, videos, and algorithms that are available
to download on the website www.website/stratifica.com. The additional material
provides useful support for the readers. Where appropriate, supplementary mate-
rials have been added to help readers better understand what is being discussed
in this book. Many supplemental content is available for exercises and also to
explain theories through laboratory experiments.

https://www.springeropen.com/books
https://www.springeropen.com/books
https://www.editora.ufpr.br/
https://www.amazon.com/gp/education-publishing
https://www.iwapublishing.com/
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The icon shown in the margin will appear throughout the text where addi-
tional material is available.

ÍThe icon shown in the margin will appear throughout the text where addi-
tional video material is available.

Book structure: The book has a modular format, allowing it to be covered in
different semesters and courses. Examples of combinations are as follows:

Acknowledgements: Scott, Jirka, Heidi Nepf, etc.





Chapter 1

Introduction

Internal gravity waves are propagating disturbances within a stable, density strati-
fied fluid. In natural systems, such as oceans, lakes, and reservoirs, these density
differences are often caused by variations in water temperature or salt concentra-
tions. In laboratory settings, internal waves have been replicated using various
fluids with differing densities (e.g., water and oil). To generate internal waves,
similar to surface waves, the interface must be disrupted. However, what sets
surface waves apart from internal waves?

Waves occur at fluid interfaces. These could be an interface between water
and air or an interface between two phases (liquid and gas). These are commonly
called surface waves. However, fluid interfaces can also occur within a fluid, and
within the same phase, whenever there are density differences.

Internal waves occur in every perturbed stratified system. As the energy
needed to increase a water volume in the air is greater than the energy needed
to increase a water volume in the lower water density due to buoyancy force,
internal waves often are much larger than surface waves generated by the same
energy input. Internal waves have been reported in different scientific areas, from
cosmology to limnology. The scientific community has observed internal waves in
the ocean, atmosphere, lakes, reservoirs, ponds, and stellar interiors (Figure 1.1).
In a simple view, the formation of internal waves depends on the stratification
condition and the strength of the perturbation that creates the waves.
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Figure 1.1 Train of internal waves off Northern Trinidad. Taken on January
18, 2013, from the International Space Station (NASA/JSC).

Recently, investigations have pointed out that internal waves of 170 meters
in amplitude produced in the Luzon Strait, between Taiwan and the Philippines,
are a key to understanding climate change and are an important missing piece of
the puzzle in climate modeling (Alford et al., 2015). Internal waves in the ocean
influence the ocean turbulence and consequently affect the ocean currents that
carry heat and salinity around the globe. This phenomenon increases the mixing
of the sea, which transfers heat from the upper ocean to deeper layers and leads
to even more ice loss.

Figure 1.2 Every climate model
predicts an increase in sea level
in the next hundred years. The
difference between the models
is essentially due to the number
of uncertainties. One of these un-
certainties that needs to be better
understood is the comprehension
of the formation, evolution, and
breaking of internal waves.

One of the first scientific observations1 of internal waves in natural environ-
ment were made by Nansen (1897) during an expedition to the North Pole in
1893. The Norwegian explorer Fridtjof Nansen felt an extra drag on his Fram boat
due to internal waves as the ship passed the Nordenskiold Archipelago, north of
Siberia. He called the phenomenon dead water, reporting that it slowed his boat
to a quarter of its normal speed:

“Fram appeared to be held back, as if by some mysterious force,
and she did not always answer the helm. In calm weather,

with a light cargo, Fram was capable of 6 to 7 knots.
When in dead water she was unable

to make 1.5 knots2.”
F. Nansen (1897)

Ekman (1904), as a Ph.D. student motivated by the observations made by
Nansen (1897), was the first researcher to study in detail the dead water effect:

1There are some evidences raised recently from ancient sources that indicate that internal waves
could be one of the reasons behind the defeat of Antony and Cleopatra against Octavian at the
naval battle of Actium. For years, historians have believed that the bad weather condition could be
the probable reason for the surprised strategy adopted by Antony, which remained at a standstill
for at least three hours, until midday, instead of, as was customary in ancient times, attacking at
dawn.

2The knot is a unit of speed equal to one nautical mile per hour, 1 knot ≡ 1.852 km/h
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“The present investigation of “Dead-Water” was occasioned by a letter in November
1898 from Prof. NANSEN asking my opinion on the subject. In my reply to Prof.

NANSEN I remarked that in the case of a layer of fresh water resting on the top of
salt water, a ship will not only produce the ordinary visible waves at the boundary

between the water and the air, but will also generate invisible waves at the
salt-water fresh-water boundary below; I suggested that the great resistance

experienced by the ship was due to the work done in generating these invisible
waves.”

Vagn Walfrid Ekman (1904)

Fridtjof Nansen (1861–1930, Norwe-
gian) was born at Store Froen, near
Oslo, the capital of Norway. He was an
explorer, scientist, diplomat, humani-
tarian and Nobel Peace Prize laureate.
Nansen received his Ph.D. from the Uni-
versity of Oslo in 1888. He made several
discoveries with polar expeditions with
his ship, The Fram, which served as
an oceanographic, meteorological, and
biological laboratory. In 1922 he was
awarded the Nobel Peace Prize for his
work on behalf of the victims of the First
World War and related conflicts.

He explained that energy from the ship is transmitted to internal waves, which
occur between layers of different densities. The boat experiences an important
loss of steering power and, consequently, the speed of the vessel decreases dra-
matically (Figure 1.3). The interest of investigations involving internal waves grew
up after 1965, when the most tragic incident involving a USA submarine with a
crew of 129 on board fell down to deep water due to a passage of a large internal
wave. The US Thresher submarine was going along the thermocline when an
internal wave took it down quickly to really deep waters. The submarine lost
orientation and had problems due to high pressure, killing the 129 people on
board (Govorushko, 2011).

The Dead Water phenomenon described by Nansen (1897) was essentially
caused by the friction caused by the boat. In contrast, internal waves observed in
the South China Sea are mainly generated by tidal flow that passes through the
topography of the seafloor and wind blowing through the ocean surface (Alford
et al., 2015). As the internal waves propagate west from the Luzon Strait, they
steepen, producing a package of internal waves propagating with 150 meters of
amplitude. Similarly, the formation of internal waves in lakes and reservoirs is
caused by many sources, but the action of the wind on the surface of the lake is
one of the most important sources of energy for the internal wave fields (Mortimer,
1952). Since the system is closed, the long wave formed by the wind creates a
stationary internal seiche.

The first observation of internal seiches in thermal stratified lakes was pro-
vided by Thoulet (1894), Watson (1903) was nevertheless the first limnologist to
provide the right interpretation of internal seiches in thermally stratified lakes.
Watson (1903) concluded that the temperature oscillation observed during a cam-
paign in Lake Loch Ness was due to an uninodal baroclinic internal wave caused
by the action of the wind on the lake surface.
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Figure 1.3 Interfacial wave generated by a boat moving on a two-layer strati-
fied fluid.

Importance of internal waves in
stratified lakes

• Influence the population
dynamics of many organ-
isms, such as the metalim-
netic phytoplankton and
planktonic larvae popula-
tions;

• Influence the dispersion of
pollutant discharges;

• influence sediment resus-
pension, which can lead to
an increase in greenhouse
gas emissions;

• Influence the thermal strat-
ification, increasing verti-
cal mixing, and instabilities
in different regions of the
system;

• In large lakes, influence the
microclimate of the region;

• The break of the internal
wave may affect the shore-
line;

The knowledge of stratifi-
cation and internal waves
is essential for lake and
reservoir management, as
well as analysis of system
changes due to climate
change.

Table 1.1 Internal wave impor-
tance

Since the beginning of the 20th century, internal waves in thermally strati-
fied lakes have been extensively studied. Many researchers have defended the
importance of internal waves in lakes and reservoirs, spreading the knowledge of
their existence and importance (Wedderburn, Williams, 1911; Mortimer, 1952).
New technologies have provided a better understanding of internal wave pat-
terns in lakes, revealing its strong influence on the system dynamics. Spectral
analysis and improved water temperature measurement have proven to be use-
ful for improving the detection of internal waves in lakes. A phenomenon that
initially appeared to be excited just in some rare cases actually occurs frequently
in lakes and reservoirs of different sizes and shapes, playing a crucial role in the
turbulence level, biogeochemical cycles, and water quality of these ambients.

Recent research has addressed the importance of internal waves in reservoirs
and lakes. Although only a small fraction of total wind energy crosses the surface
boundary layer and energizes internal seiche fields (Wetzel, 2001; Wüest, Lorke,
2003; Wüest et al., 2000), studies have shown that the wind-induced internal wave
is responsible for large-scale motions in the benthic boundary layer, favoring
episodes of sediment resuspension (Bruce et al., 2008). Another study in Lake
Geneva has observed that up to 40% of hypolimnetic volume was exchanged after
internal seiche events (Umlauf, Lemmin, 2005). Internal seiches play an impor-
tant role in the transfer of energy to smaller-scale motions and vertical mixing in
the interior of the basin (Boehrer et al., 2000; Etemad-Shahidi, Imberger, 2006;
Lorke, 2007; Preusse et al., 2010), and in the bottom boundary layer (BBL), where
the friction of the wave-induced current bed can induce levels of turbulence
30 times higher than the magnitude found in the interior of the basin (Wüest,
Lorke, 2009). Vertical displacement of water masses associated with internal
seiches also affects the vertical position and distribution of phytoplankton and
zooplankton and, consequently, also their productivity and ecological interac-
tions (Mortimer, Horn, 1982; Rinke et al., 2007; Hingsamer et al., 2014), or can lead
to anoxic water upwelling from deeper layers to the surface (Flood et al., 2021).
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Furthermore, seiche-induced bottom currents enhance oxygen penetration into
sediment, favoring microbial organic matter degradation (Frindte et al., 2013).

The energy deposited into such long internal wave is eventually transformed
through a down-scale energy cascade across the spectrum of internal wave due
to the strong turbulence production in the benthic boundary layer. Observations
have shown that it allows a fundamental internal seiche to degenerate into a train
of propagating waves, increasing the mixing of the system (Boegman et al., 2005b).
Recent observation also indicates that internal seiches are susceptible to break
on the lakeshore, being a mechanism that creates a mixing hotspot in a specific
location ().

According to Mortimer (1952), internal waves have been considered one of
the most important processes of vertical water movement and mixing in lakes
and reservoirs. Therefore, mechanical understanding and prediction of internal
seiche activity is of great importance for understanding the energy flux paths, as
well as ecological and biogeochemical processes in stratified lentic ecosystems.

This book starts with a detailed description of stratified flows in Chapter 2.
Theories, experiments, and exercises on density-induced flows are presented.
Chapter 3 applies and deepens the theory on stratified flows on lakes and reser-
voirs, covering all aspects of physical limnology.

Readers interested in field studies and laboratory experiments will find guid-
ance and examples in Chapter 4. For those interested in further processing field
or laboratory data, we present data processing techniques and spectral analysis
in Chapter 5.

The theory on interfacial waves and internal waves is presented in Chapters 6
and 7, respectively, including numerical model applications.





Chapter 2

Stratified Flows

This chapter serves as an introductory section, outlining the fundamental knowl-
edge necessary to comprehend the content of this book. Before delving into the
topic of internal waves, it is essential to have a solid foundation in stratified fluids,
fluid mechanics, and wave theory. Therefore, this chapter offers a concise review
of these subjects to provide a comprehensive understanding of the motion of
internal waves.

The chapter begins by providing an overview of stratified fluids, including an
introduction to hydrostatics and the derivation of equations of motion. These
concepts are presented to establish the necessary groundwork for subsequent
discussions on internal waves.

For readers who are already familiar with the principles of fluid mechanics,
wave theory, and stratified fluids, it is recommended to participate at least in the
exercises provided at the end of this chapter. These exercises offer an opportunity
to reinforce and apply the knowledge covered in the introductory material. Figure 2.1 Pycnometer and den-

simeter, devices to measure the
density of water.

2.1 Stratified Fluids

A stratified fluid is characterized by spatial variations in its properties. One of
the primary and significant forms of stratification in lakes and reservoirs is the
variation in density along the vertical axis, resulting in a layered system. Fluid
stratification is a common occurrence in various natural environments, such as
lakes, reservoirs, oceans, and the atmosphere, and in many aspects of our daily
lives. Density stratification has a profound impact on mass fluxes, which may not
always adhere to Fick’s law (Imboden, 2003). Typically, the density gradient plays
a crucial role in determining the pattern of fluid movement.

Therefore, we define a stratified fluid when its density ρ is a function of space
and/or time,

ρ = f (x, y, z, t ) = [M/L3].

In laboratory tanks, it is possible to create systems using different fluids, such
as water-oil or water-gasoline. Due to variations in density, these fluids segregate

11
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into distinct layers. For instance, in the case of a water-oil mixture, the lighter oil
will naturally rise to the top, while the denser water will settle at the bottom.

Now, let us address the question: "Can a fluid, such as water, have different
densities?" The answer is a resounding "yes!". A compelling example can be
observed when diving into a deep pool. As you descend further, you may see that
the water is becoming progressively colder. This phenomenon occurs because as
the water cools, its density increases, causing it to become heavier. In situations
where density variations are primarily induced by temperature differences, we
can refer to this as thermal stratification.

Liquid density
Densimeters and pycnometers
(Figure 2.1) are devices that are
used to measure the density of
most liquids (e.g. water, oil, and
gasoline). These devices make
direct measurements based on the
weight of a measured volume of
fluid. In chapter 4 some exercises
to measure the density of fluids
are presented.

Chapter 4 is dedicated to exper-
imentally demonstrating many
ways to measure the density of
different liquids.

Table 2.1 Liquid density measure-
ments

Another way to vary the density of water is by varying its salt concentration
(salinity), which is called salinity stratification. A classical example of this differ-
ence may be observed when you try to float in a swimming pool or in seawater.
Technically, you can float more easily in seawater than in a swimming pool be-
cause seawater is heavier than freshwater. The buoyancy force over your body,
a net upward force that acts over any object in any fluid, is higher in seawater,
pushing you upward to the water surface.

Another way of altering the density of water is by adjusting its salt concen-
tration. An illustrative example highlighting this disparity can be experienced
when attempting to float in both a swimming pool and seawater. Technically
speaking, it is generally easier to float in seawater compared to a swimming pool
due to the higher density of seawater in relation to freshwater. This disparity in
density results in a greater buoyancy force acting on your body. The buoyancy
force, which represents the net upward force exerted on any object submerged in
a fluid, becomes more pronounced in seawater, propelling you toward the water’s
surface.

The physical characteristics of water, such as temperature and salt concen-
trations, play a pivotal role in the generation of density stratification within the
water. It should be noted that these influences extend beyond water alone. For
example, Table 2.2 presents an illustration of how changes in temperature can
lead to variations in air density. While numerous examples highlight fluid density
as a function of various properties, our primary focus in this context revolves
around waves within natural systems, placing our attention squarely on water.

Air density
Why is a room heater placed near
the floor and an air conditioner
near the ceiling?
The answer is related to the influ-
ence of temperature on air density,
since colder air is denser than
warm air, it sinks to the bottom of
the room. Since we do not want
a stratified system, we create the
ideal conditions to mix the air to
obtain a more uniform tempera-
ture throughout the room.

Table 2.2 Stratified air

Due to our focus on computing the water density of lakes and reservoirs, direct
measurements utilizing densimeters and pycnometers are not practical. This
could help measure the water density near the water surface, however, estimating
water density in deeper regions is not as trivial. Extracting water samples at
various depths from a stratified lake can be time-consuming and has the potential
to alter water properties, thereby affecting water temperature and, subsequently,
water density. To achieve high temporal and spatial resolution, we rely on indirect
measurements for the analysis of water density. Understanding how physical
properties, particularly temperature and salinity, influence the density of water
becomes crucial as we recognize their significant impact.
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2.1.1 Properties that control water density

Pressure

T Water density in natural en-
vironments is influenced
not only by variations in wa-
ter temperature and salinity,
but also by pressure, chem-
ical compositions, and sus-
pended matter.

Under natural environmental conditions, pressure only significantly affects the
density of water in the abyssal zone, which is a layer within the pelagic zone of the
ocean, typically found between 1 km and 5 km deep. The presence of an immense
water column above this region compresses the seawater, resulting in increased
pressure in the deepest portions. As a consequence, high pressure causes a slight
reduction in water volume, leading to a density change of approximately 4.5%.

In the abyssal zone, seawater exhibits slight compressibility, similar to the
behavior observed in most gases under moderate pressures. However, it is impor-
tant to note that for most lakes, which have depths less than 300 m, pressure does
not exert a substantial influence on the density of the water. Instead, temperature
and salinity emerge as the main driving factors shaping water density in such
cases.

Temperature

The density of pure water at 4 ◦C and atmospheric pressure is approximately
1000 kg/m3. When water is heated from 4 ◦C to 25 ◦C, for example, its density
undergoes a slight decrease. This reduction in density can be attributed to the
increased kinetic energy of the water molecules as heat is added. Consequently,
water atoms vibrate at a faster rate, causing the water to occupy a larger volume.
However, this expansion in volume is not readily noticeable. Even at its boiling
point, when the system is saturated with thermal energy, the water begins to
evaporate.

In contrast, when the water temperature drops below 4 ◦C, the formation
of ice crystals begins within the lattice structure, leading to the formation of
numerous stable hydrogen bonds among water molecules (see Figure 2.2). As
water molecules occupy a larger volume due to the crystal formation, the density
of water gradually decreases until it reaches the freezing point.

Salinity

Figure 2.2 Liquid water structure
with crystal lattice formation.

Salinity can be defined as the ratio of conductivity. The conductivity of water
is influenced by the number of dissolved ions per unit volume and their ability
to move freely. However, the mobility of ions is also influenced by temperature.
Moreover, temperature can affect the dissociation of molecules, leading to an
increase in the number of ions in the solution. When examining natural wa-
ter bodies such as seas, rivers, reservoirs, and lakes, the relationship between
temperature and conductivity exhibits highly nonlinear behavior.

In these natural-water systems, higher temperatures, combined with an in-
creased number of ions, result in elevated water conductivity. This relationship is
the underlying reason why seawater demonstrates higher conductivity and, con-
sequently, higher density compared to freshwater. The conductivity and density
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of water are thus influenced by factors such as temperature, ion concentration,
and their complex interactions in natural water environments.

Equation of state

Since the late nineteenth century, researchers have dedicated their efforts to
establishing an empirical equation capable of determining the density of water
using measurements of pressure, temperature, and salinity. This endeavor to
create an equation that encompasses the entire range of these three variables has
been the result of numerous laboratory experiments that have been frequently
reviewed over the years. The resulting equation, known as the Equation of State
for Water, represents a nonlinear function used to estimate the density of water,
or its specific volume, based on measurements of salinity, temperature, and
pressure.

One of the first formulations for pure water was proposed by Tait (1888),
which allowed the estimation of the water density using only temperature values.
Building on the predictive capabilities of Tait (1888), Kell (1975) presented a
polynomial equation of state specifically designed for pure water. This equation
remains valid for temperatures ranging from 0 ◦C to 30 ◦C and pressures below
108 Pa:

Figure 2.3 Comparison between
water density calculated by EOS-
80 and TEOS-10 as a function of
temperature only.

ρpure = ρo +a1 τ−a2 τ
2 −a3 τ

3 +a4 τ
4 −a5 τ

5

1+a6 τ
, (2.1)

in which ρo = 999.83952 kg/m3 is the reference density, τ is the water tem-
perature, a1 = 16.945176 kg/(m3 ◦C), a2 = 7.9870401 10−3 kg/(m3 ◦C2), a3 =
46.170461 10−6 kg/(m3 ◦C3), a4 = 105.56302 10−9 kg/(m3 ◦C4), a5 = 280.54253
10−12 kg/(m3 ◦C5), a6 = 16.879850 10−3 1/◦C.

Throughout the years, numerous studies have made significant contributions
by proposing new equations of state for water. These advances have been aimed
at improving accuracy and expanding the range of applicability. Tanaka et al.
(2001)have proposed a new equation of state for pure water valid from 0 ◦C to
40 ◦C, under a pressure of approximately 101 325 Pa:

ρpure = ρo − ρo(τ+b1)2 (τ+b2)

b3 (τ+b4)
, (2.2)

in which ρo = 999.974950±0.00084 kg/m3, b1 =−3.983035±0.00067 1/◦C, b2 =
301.797 1/◦C, b3 = 522528.9 1/◦C2, and b4 = 69.34881 1/◦C.

One of the most famous algorithms for estimating water density was intro-
duced by Fofonoff, Millard (1983) in the UNESCO technical report (EOS-80). This
algorithm, which gained significant recognition, utilizes a polynomial function
consisting of 25 terms. It effectively characterizes the density of water as a func-
tion of temperature (τ), salinity (s), and pressure (p):

ρ(τ, s, p) = ρo(1−βτ(τ−τo)−βs(s − so)−βp (p −po)), (2.3)
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in which βτ is the thermal expansion coefficient, βs is the saline contraction
coefficient, and βp is the compressibility coefficient. The parameters β exhibit
variations dependent on temperature, salinity, and pressure, resulting in inter-
dependence between these variables. However, it is important to note that this
interdependence extends beyond just pressure, salinity, and temperature. In
reality, there exists a complex interplay among multiple quantities, including
dissolved substances and the chemical and physical characteristics of water (see
Figure 2.4).

The equation of state formulated by Fofonoff, Millard (1983) is valid for seawa-
ter, with a salinity range that typically varies from 2 to 42; however, observations
have demonstrated good applicability even for salinities lower than 2.

Figure 2.4 Water density and its di-
rect and indirect interdependence.

Recently, important developments toward a new International Thermody-
namic Equation of Seawater (TEOS-10) have been made. The new formulation
updates the thermodynamic descriptions and also incorporates the solute compo-
sitions. Although the new approach is totally consistent with Maxwell’s thermody-
namic cross-differentiation relations and incorporates the new thermodynamic
description of pure water, considering a thermally stratified lake without salinity
contribution, the solutions of the EOS-80 and TEOS-10 equations of state fit very
well with water density measurements, which presents a small difference between
both expressions (Figure 2.3).

Taking into account the contribution of salinity s (g/kg) and temperature τ
(◦C) to the estimation of water density, equation 2.3 can be reduced to

ρ = ρpure + c1s + c2s1.5 + c3s2, (2.4)

in which ρ is the density of water, ρpure is the density of pure water (which can be
obtained from equation 2.1), and the coefficients c1, c2, and c3 are

T We neglected the c’s coef-
ficients terms with order
higher than τ!

c1 = 0.824493−0.0040899τ

c2 =−0.005724+1.0227×10−4τ

c3 = 0.00048314.

The influence of chemical composition and suspended matter

The presence of dissolved substances in water can introduce notable changes in
density, particularly in geochemical lakes characterized by high concentrations
of dissolved substances. While most natural systems do not exhibit elevated
concentrations of dissolved substances that exert a dominant influence on water
density, it is essential to recognize that in certain environments, such as areas
with volcanic activity, this factor can become significantly important. For ex-
ample, lakes or ocean regions experiencing volcanic activities might encounter
elevated concentrations of specific substances, such as methane, which can have
a substantial impact on water density. In such scenarios, the concentration of
dissolved substances plays a significant role in the density variation, affecting the
hydrodynamics of these systems.



16 Chapter 2 Stratified Flows

Studies have identified that iron accumulation in deep waters and carbon
dioxide and calcite production can generate density stratification (Hongve, 2002;
Rodrigo et al., 2001), which could play an important role in vertical circulation
and wave propagation (Boehrer et al., 2009, 2010).

To model chemical stratification, Boehrer et al. (2010) have proposed an
implementation to incorporate the chemical composition of lakes to estimate
water density. The algorithm RHOMV calculates the partial molal concentration
of dissolved substances. The RHOMV algorithm is coupled with equation 2.1
for pure water, as proposed by Kell (1975), to determine the combined effect of
temperature and chemical components on water density. Further information
and an online calculator can be found at https://www.ufz.de/index.php?en=
39156). This combined approach allows for a more comprehensive modeling
of water density, taking into account both the temperature and the chemical
composition of the water to capture the complexities of chemical stratification in
lakes.

Figure 2.5 A temperature-salinity-
density diagram obtained from
equation 2.4. To incorporate the density of dissolved substances, a straightforward ap-

proach is to consider the mass and volume of each substance based on its molar
concentration. By summing the mass and volume contributions of each dissolved
substance, the overall density of the solution can be found:

ρ = 1+∑
i bi Mi

1/ρpure +∑
i bi∀i

, (2.5)

in which ρpure is the density of pure water (kg/m3), bi is the molal1 concentration
(kg/mol), Mi is molar mass of the substance i (kg/mol) and ∀i is the partial vol-
ume of molal, which is slightly dependent on the ionic strength and temperature
(which can vary depending on the substances considered). The index i indicates
each dissolved substance present in the water.

Although electrical conductivity can be influenced by dissolved substances in
lakes, the influence of the composition and concentration of solutes plays a cru-
cial role in determining the water density of electrical conductivity, and cannot be
accurately obtained by assuming constant coefficients as defined in equation 2.4.
Based on this concept, Moreira et al. (2016) proposed a new approach to account
for the composition of different solutes presented in geochemical lakes from tem-
perature and conductivity measurements, but assuming two different coefficients
(λo and λ1) that vary depending on the composition and concentration of solutes
in lakes:

ρ = ρpure +λo κ25 +λ1 κ25(τ−τ25), (2.6)

in which ρpure is the density of pure water (kg/m)3, κ25 is the electrical conduc-
tivity in 25 ◦C (mS/cm), τ is the temperature of water (◦C), and τ25 = 25 ◦C is the
reference temperature.

Field measurements from different lakes have identified a dominance of
double-charged ions (e.g. CaSO4) and a higher concentration of solutes, lead-
ing to higher values of λo , which can vary between 0.48 kg cm/(m3mS) and

11-molal means 1 mol dissolved in 1 kg of water

https://www.ufz.de/index.php?en=39156
https://www.ufz.de/index.php?en=39156
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0.83 kg cm/(m3mS) (Figure 2.6). However, unlike λo , which varies strongly, the
coefficient λ1 is around −0.0015 kg cm/(K mS m3), not showing significant varia-
tions from lake to lake (Moreira et al., 2016).

Fluid systems can also be stratified by the variation in suspended matter
concentrations (e.g. turbidity currents). The contribution of suspended matter
to the density of water can be obtained by the sum of the density of water for
pure water (equation 2.4) and the fraction of the mass of suspended matter.
Mathematically, it can be expressed as

ρ = ρpure +
ised∑
i=0

C i
(
1− ρpure

ρi
sed

)
, (2.7)

in which ρpure is the density of pure water, ρi
sed is the density of the suspended

matter fraction i , ised is the number of suspended matter fractions, and C i is the
mass concentration of the suspended matter fraction i .

Figure 2.6 Distribution of values
of λo and λ1 obtained for differ-
ent lakes (data assembled from
Moreira et al. (2016)).

2.1.2 Stratification in natural water bodies

Now that we have identified the key factors that influence changes in water
density, the question remains: What mechanisms drive these variations in natural
environments, such as lakes and oceans?

The temperature in natural environments is largely governed by solar radi-
ation, which comprises short-wave radiation emitted by the Sun. However, the
overall heat flux at the water surface is a composite of various factors, including
long-wave radiation (infrared and water surface radiation), evaporation, precip-
itation, heat convection, and inflow and outflow fluxes. This comprehensive
balance provides information on the mechanisms through which heat energy is
transferred to the water body.

Figure 2.7 shows the individual contributions of each component to the heat
balance of Lake Zurich in different seasons. When the heat balance is positive,
the lake serves as a heat reservoir and retains excess energy, commonly observed
during the summer season. On the contrary, in the winter season, the lake experi-
ences heat loss, with a substantial portion of the heat energy being transferred to
the atmosphere.

In general, heat radiation strikes the water’s surface, and some of this radia-
tion is reflected back into the atmosphere. The remaining energy penetrates the
surface of the water and is subsequently transported through the water column.
However, because of the low conductivity of water, the amount of solar radia-
tion absorbed decreases with increasing depth, resulting in the formation of a
vertical thermal gradient. Consequently, surface water tends to be warmer than
the deeper layers of the lake. During the summer season, most lakes exhibit a
stratified structure characterized by three distinct vertical zones: the epilimnion,
metalimnion, and hypolimnion.



18 Chapter 2 Stratified Flows

Figure 2.7 Illustration of the monthly heat flux based on Lake Zurich mea-
surements (Imboden, Wüest, 1995). x-axis indicates the temporal (sea-
sonal) variation. y-axis shows the amount of monthly mean heat flux be-
tween water and the atmosphere, in which negative values indicate that the
lake is losing heat to the atmosphere.

The epilimnion is the top layer of a lake formed as a result of the accumulation
of heat energy from the atmosphere. It is characterized by warmer temperatures
and higher oxygen levels, creating favorable conditions for microorganisms at the
base of the aquatic food web. This region plays a crucial role in supporting the
biodiversity of lakes. Unlike terrestrial ecosystems, lighter organisms in aquatic
ecosystems often have an advantage in capturing light because of the buoyancy
effect, which keeps them near the water surface where light is abundant.

The mixing of the epilimnion can vary depending on factors such as wind
exposure and intensity. In larger water bodies with stronger winds, the depth
of mixing can be greater. The temperature of the epilimnion can vary across
different regions of the water body and is influenced by several factors, including
wind intensity, lake size, suspended matter, accumulation of microorganisms,
and geographical location.

Figure 2.8 Thermal stratification
in a typical stratified freshwater
basin during summer.

In freshwater lakes, hypolimnion is the bottom layer and is characterized by
being the coldest and densest layer. This zone is typically anoxic and supports only
a limited number of species. When a lake is thermally stratified, the hypolimnion
becomes isolated from atmospheric conditions, and as a result, solar radiation
does not reach this zone.

The lower heat energy in the deeper regions of the hypolimnion is accom-
panied by the dissipation of turbulent kinetic energy from large-scale currents
(Lemckert, Imberger, 1998; Wüest et al., 2000; Fricker, Nepf, 2000), internal seiches
that propagate through the lake (Lorke et al., 2005; Cossu, Wells, 2013) and break
near the lake shore (Carvalho Bueno de et al., 2023), the breaking and reflection of
high-frequency internal waves (Thorpe, 1997; Michallet, Ivey, 1999; Lorke, 2007),
and the interaction of large-scale currents with the lake’s topography (Rudnick
et al., 2003). These turbulent mechanisms within the hypolimnion often result in
small temperature gradients, often lower than 0.03 ◦C (Lorke et al., 2005).

The metalimnion is a zone in freshwater lakes where the water temperature
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drops very fast, in which the point of greatest water temperature change is called
the thermocline. It is important to note that, while some sources use the term
"thermocline" interchangeably with "metalimnion," we will use "thermocline"
specifically to refer to the point of the fastest temperature drop, avoiding any
confusion. Thus, the thermocline represents a single interface within the larger
metalimnion (Figure 2.8).

The metalimnion is situated between the epilimnion (upper layer) and the
hypolimnion (lower layer) of the lake. Its thickness can vary from one body of
water to another. In smaller lakes, the thermocline is typically located around 3
meters below the water surface. In larger lakes, the thermocline can extend up
to 10 meters, and the metalimnion may occupy several meters (Hunkins, Fliegel,
1973).

Pycnocline

In a similar manner to the thermocline’s relationship to temperature, the pyc-
nocline represents a distinct point where the density gradient within the water
column is most pronounced. Consequently, in freshwater lakes, the thermocline
aligns with the pycnocline, as temperature variations serve as the main driving
force behind the stratification observed throughout the water column (see Section
2.1.1).

In scenarios where the stratification of the water column is mainly driven
by salinity, pycnocline corresponds to halocline, indicating the region with the
fastest decline in salinity. However, in larger water bodies, such as oceans and
extensive lakes and reservoirs, where both temperature and salinity contribute
to density variations, the pycnocline does not necessarily align with any specific
cline.

In these cases, the pycnocline characterizes the area within the water column
where the density changes most abruptly due to combined effects of temperature
and salinity fluctuations. It is important to note that the precise location and
characteristics of pycnocline can vary depending on the specific water body and
the interplay between temperature, salinity, and other substances.

Figure 2.9 provides a visual representation of the seasonal changes in the
vertical temperature and density profiles of a hypothetical dimictic lake. This type
of lake undergoes two complete mixing events per year, resulting in periods of
unstratified conditions. Additionally, the lake is covered by ice during the winter
season.

The figure helps illustrate the variations in temperature and density through-
out the year, demonstrating the presence of pycnocline during stratified periods.
Pycnocline is observed as a distinct layer where the density gradient is most pro-
nounced, separating the stratified layers of the lake. By examining this figure,
we can better understand how the temperature and density profiles fluctuate
seasonally, with the presence of pycnocline being a notable characteristic during
periods of stratification.
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Figure 2.9 Seasonal variation of the thermal structure of a dimictic lake. a)
Summer, b) Fall, c) Winter, and d) Spring.

2.2 Theory of Stratified Flows

Fluid mechanics is a fundamental field that encompasses the study of gases and
liquids and their behavior under various conditions. It can be divided into two
primary branches: fluid dynamics and statics. Fluid dynamics focuses on the
movement of fluids, with subdisciplines such as aerodynamics and hydrodynam-
ics. These branches share fundamental concepts, as the motion of both liquids
and gases is governed by similar equations. However, their assumptions differ
significantly.

Fluid dynamics employs mathematical techniques to solve problems, sim-
ilar to those in other scientific disciplines. However, due to the complexity of
real-world situations and limitations in current mathematical tools, substantial
simplifications are often necessary. Consequently, the motion of fluids can be
simplified in various ways. For instance, in aerodynamics, the influence of gravity
is typically disregarded, while the compressibility of gases remains essential and
cannot be overlooked, even in low-pressure conditions.

As our objective is to investigate stratified flows in natural systems, this section
focuses solely on the flow of liquids, particularly water. While we disregard the
compressibility of the liquid, we do take into consideration the influence of
gravity. It is important to note that this chapter provides a comprehensive review
of hydrostatics and hydrodynamics, which are crucial for successfully navigating
this book. A solid grasp of mathematical techniques and fundamental principles
of fluid mechanics will undoubtedly facilitate comprehension in this section. To
initiate our analysis, we begin by examining the hydrostatic properties of stratified
flow, assuming that readers are already well acquainted with the fundamental
concepts of fluid mechanics.



2.2 Theory of Stratified Flows 21

2.2.1 Hydrostatic

The presence of a gravitational field significantly affects buoyant forces and has a
profound influence on the dynamics of stratified flows (Socolofsky, Jirka, 2005).
Density variations between layers give rise to buoyancy-restoring forces that alter
density and pressure, thus suppressing vertical movements. This stratification
enables us to characterize the behavior of the system in terms of stability, which
can manifest itself in three states: unstable, neutral, and stable (Figure 2.10).

The neutral fluid state is characterized by an unstratified fluid, where the
particles encounter similar resistance to motion in all directions (Socolofsky, Jirka,
2005). On the contrary, unstable stratification occurs when a heavier fluid resides
above a lighter fluid. When a fluid parcel is displaced, it tends to move away from
its original position, leading to elevated levels of mixing and turbulence. Table
2.2 provides examples of mechanisms that exemplify the conditions of unstable
stratification.

In lakes and reservoirs, these events occur primarily near the surface of the
water, where the wind generates a thin, uniform layer. This process, known as
surface cooling, induces a decrease in the water temperature close to the water
surface. Consequently, there is an increase in vertical mixing of surface waters.

V2.1However, stable stratified fluids exhibit a configuration in which a heavier
layer resides above lighter layers. When a fluid parcel is displaced in such a
system, it tends to retrace its path back to its original position. Freshwater lakes
frequently show stable stratification as a result of the mechanism described in
Section 2.1.2. In this context, the warmer layer, formed by atmospheric heat
energy, is primarily concentrated near the water surface. It is important to note
that stable stratification is the only state capable of supporting internal waves
within the fluid.

Figure 2.10 Stability definition according to the density profile.

Since internal gravity waves are exclusively supported in stable stratified sys-
tems, our analysis primarily centers on stable stratification conditions. However,
we also touch upon an unstable condition arising from internal wave motion and
the mixing regimes within lakes.
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Buoyancy-Frequency

An essential characteristic of a stratified environment with density distribution
is the buoyancy frequency, also known as the Brunt-Väisälä frequency. This
frequency serves as a measure of static stability within the system. To comprehend
the static stability, we begin by assuming the presence of a perturbation, which,
in the case of static stability, can be described as a vertical displacement of a fluid
parcel ∀.

Initially, we consider the vertical movement of a water parcel ρpar with a
volume ∀, which is balanced by buoyancy force Fb and gravitational force Fm ,
thus maintaining equilibrium between the fluid parcel and the surrounding
ambient fluid ρamb (Figure 2.11):

mpar
∂2ζ

∂t 2 =−g (ρpar −ρamb) ∀= g (ρamb −ρpar) ∀, (2.8)

in which ζ is the vertical displacement and mpar is the mass of the fluid parcel.
Note that the parcel volume is ∀= mpar/ρpar.

Figure 2.11 The movement of a
fluid parcel ∀ by a small amount ζ
from the equilibrium position.

Considering that the volume parcel ∀ undergoes density variations as a result
of vertical displacement, we can modify equation 2.8 to determine the necessary
acceleration needed to induce this change:

∂2ζ

∂t 2 = g

ρpar

(
∂ρamb

∂z
− ∂ρpar

∂z

)
ζ, (2.9)

in which equation 2.9 is an ordinal differential equation in ζ with a general solu-
tion ζ= cos(ω t )

Applying the general solution to 2.9, we find

−ω2 − g

ρpar

(
∂ρamb

∂z
− ∂ρpar

∂z

)
= 0. (2.10)

Rearranging equation 2.10, we can find

ω=
√
− g

ρpar

(
∂ρamb

∂z
− ∂ρpar

∂z

)
. (2.11)

Assuming that the variation of pressure p causes a density change in the
parcel volume that leads to a density similar to the surrounding (ρpar = ρamb), we
can write equation 2.11 as

ω=
√

− g

ρamb

(
∂ρamb

∂z
− ∂ρamb

∂p

∂p

∂z

)
(2.12)

Figure 2.12 The distribution of
buoyancy frequency (Hz), derived
from typical temperature profiles.

The potential density ρamb can be calculated taking the contribution of tem-
perature τ, salinity S, and pressure p, leading to

∂ρamb

∂z
= ∂ρamb

∂τ

∂τ

∂z
+ ∂ρamb

∂S

∂S

∂z
+ ∂ρamb

∂p

∂p

∂z
. (2.13)
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By combining equation 2.12 with equation 2.13, we obtain the following
expression:

ω=
√

− g

ρamb

(
∂ρamb

∂τ

∂τ

∂z
+ ∂ρamb

∂S

∂S

∂z

)
, (2.14)

The expression 2.14 indicates that, while pressure may contribute to changes
in water density, it does not play a role in stability considerations. Often, for
simplicity, equation 2.14 is commonly presented as

ω≡ N =
√
−g

ρ

∂ρ̄

∂z
, (2.15)

in which g is the gravitational acceleration, ρ̄ is the potential density, ρ is the
characteristic density of the fluid.

Buoyancy frequency distribution
The buoyancy frequency can be
obtained for thermally stratified
lakes and has a typical distribution
as illustrated in Figure 2.12. Gen-
erally, the buoyancy frequency is
estimated as

N (z) =
√

− g

ρ(i +1)

∆ρ

∆z
, (2.16)

in which ∆z is the distance be-
tween two measurements, ρ
is the mean water density, and
∆ρ = ρ(i +1)−ρ(i ). The index i
indicates the discretized position
of each measurement, where i = 0
is the measurement closest to the
water surface. The water density
is obtained from the equation of
states described in Section 2.1.1
and is based on discretized mea-
surements.

Table 2.3 Buoyancy frequency in
stratified lakes

Physically, the buoyancy frequency represents the frequency at which a dis-
placed fluid volume would oscillate when vertically displaced. In this mechanism,
the fluid parcel gains vertical velocity and, upon reaching its initial level, its in-
ertia drives it further downward. Consequently, the parcel is lifted upward by a
buoyant force, resulting in persistent oscillations around the equilibrium level
(Cushman-Roisin, Beckers, 2011).

The buoyancy frequency characterizes the maximum frequency of internal
waves (oscillatory disturbances) that the stratification can sustain before being
overwhelmed by turbulence and mixing. A larger density difference between the
epilimnion and hypolimnion corresponds to a higher buoyancy frequency, result-
ing in an increased stability of the system. As a consequence, the metalimnion
layer acts as a barrier to the transfer of heat, aquatic microorganisms, chemical
compounds, and nutrients. Furthermore, the metalimnion layer contributes to
reducing current velocities and affecting light reflection (Imberger, 1998).

Lake stability

Lake stability, also known as Schmidt stability, refers to the energy required per
unit of surface area to overcome the resistance to mechanical mixing within a
lake. It serves as an indicator of both the strength of stratification and the density
stability of the water column. The concept of lake stability was initially derived by
Schmidt (1928) and later modified by Mortimer (1959).

Schmidt stability, typically expressed in units of J/m2, quantifies the amount
of energy needed to homogenize the entire system to the same temperature
without any additional heat flux.

Figure 2.13 shows a lake that exhibits a typical stratification pattern. It is
important to note that the density difference that must be overcome during
mixing by each volume element is directly proportional to ∆ρ = (ρz −ρ). Here, ρz

represents the density at a specific depth z, while ρ represents the mean density
of the system, which is obtained when the lake is thoroughly mixed. The mean
density is defined as:

ρ = 1

∀
∫ H

0
ρz Az dz, (2.17)
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where ∀ is the volume of the lake, H is the total water depth, and Az is the interfa-
cial area at depth z. It is important to note that the mean density ρ is not simply
an average calculated from a single profile. This is only applicable to rectangular
tanks. In other cases, the mean density must be calculated considering the center
of mass of the stratified lake, taking into account the total volume of the lake ∀.

Figure 2.13 Typical lake and the work required to break the stratification.

The force associated with this density gradient can be expressed as

F =
∫

(ρz −ρ) g Az dz, (2.18)

in which g is the acceleration of gravity.
If we consider the forces acting at a distance d = z − z∗, where z∗ represents

the center mass of the lake (the depth at which the mean density is located), we
can express the work required per unit area for this transformation as follows

Ws = F d

Ao
= g

Ao

∫ H

0
(ρz −ρ) (z − z∗) Az dz. (2.19)

Another approach
There is another approach to eval-
uate lake stability (equation 2.22)
as described by Schmidt (1928).
However, although the expression
gives the same result, the value is
negative, indicating that the water
below the centroid supply works
for the system (Idso, 1973). Obvi-
ously, this concept is not correct
when we want to find the total
work, which indicates that equa-
tion 2.22 is "more meaningful"
(Idso, 1973).

Table 2.4 Schmidt stability.

Expanding 2.19 gives us:

Ws = g

Ao

∫ H

0
(ρz −ρ) (z − z∗) Az dz,

= g

Ao

(∫ H

0
ρz z Az dz −

∫ H

0
ρz z∗ Az dz −

∫ H

0
ρ z Az dz +

∫ H

0
ρ z∗ Az dz

)

= g

Ao

(∫ H

0
ρz z Az dz − z∗

∫ H

0
ρz Az dz︸ ︷︷ ︸
ρ ∀

−ρ
∫ H

0
z Az dz︸ ︷︷ ︸
zv ∀

+ρ z∗
∫ H

0
Az dz︸ ︷︷ ︸
∀

)
,

in which the second term of the right-hand side can be simplified by applying the
mean density, exactly as defined in 2.17. The integration specified in the last term
is a clear description of the lake volume ∀, and the integration of the third term
on the right-hand side is the definition of the depth of the centroid (geometric
center):

zv = 1

∀
∫ H

0
z Az dz. (2.20)
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Thus, finally, we have

Ws = g

Ao

(∫ H

0
ρz z Az dz���

�:−z∗ρ ∀ −ρzv ∀�����:+ρ z∗ ∀
)
,

Ws = g

Ao

(∫ H

0
ρz z Az dz −ρzv ∀

)
, (2.21)

By substituting Equation 2.17 into Equation 2.22, we can determine the well-
known form of Schmidt Stability

Ws = g

Ao

(∫ H

0
ρz z Az dz − zv

∫ H

0
ρz Az dz

)
,

Ws = g

Ao

∫ H

0
ρz Az (z − zv ) dz. (2.22)

The value of Ws increases as the stratification condition becomes stronger.
A deeper lake will also require more energy to mix, resulting in higher values
of Ws compared to shallower lakes. The Schmidt stability typically ranges from
11 J/m2 to 43000 J/m2 (Read et al., 2011; Mortimer, 1959), although there is no
defined limit for this index. It is important to note that Ws is not influenced by
the intensity of the wind, indicating that this index does not provide information
on the actual state of mixing within the body of water. Instead, it reflects the lake’s
capacity to resist mixing because of density gradients and the volume of water
present.

For a discrete data set, we can rewrite equation 2.22 as

Ws = g

Ao

( H∑
z=0

ρz Az (zv ) ∆z

)
, (2.23)

in which zv is the depth of the geometric center of the lake.

Hydrostatic Pressure

Hydrostatic pressure is the pressure that fluids exert at a given point without the
presence of motion. mathematically, hydrostatic pressure is defined as follows:

∂p

∂z
=−ρg , (2.24)

in which p(z) is the hydrostatic pressure, g is the acceleration of gravity, and ρ(z)
is the density of water.

The hydrostatic pressure within a multilayer system (ptotal) can be determined
by summing the hydrostatic pressures within each individual layer, as follows:

ptotal =
N∑

i=0
ρi g ∆zi , (2.25)
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in which N represents the total number of layers, g denotes the acceleration due
to gravity, ρi signifies the fluid density in layer i , and ∆zi represents the thickness
of that specific layer.

Consider the scenario depicted in Figure 2.14 as an illustrative example. In this
two-layer system, we aim to derive an expression that describes the hydrostatic
pressure within the lower layer. It is important to note that both interfaces, the
water surface and the thermocline, deviate from their equilibrium positions,
denoted by the functions η and ζ, respectively. It is worth mentioning that both
functions (η and ζ) are defined with respect to the lake surface.

Assuming that the hydrostatic pressure in the lower layer is described by the
contribution of the hydrostatic pressure in each layer above z, we can divide P2(z)
into one component from the upper layer and another from the lower layer:

P2(z) = Player 1(η,ζ)+Player 2(ζ, z). (2.26)

Figure 2.14 Two-layer stratifica-
tion with perturbed motion on
the surface of water (η) and the
pycnocline region (ζ).

The contribution of the upper layer to hydrostatic pressure P2(z) is defined as

Player 1(η,ζ) = ρ1g H1 +ρ1gη−ρ1g (H1 +ζ)

Player 1(η,ζ) = ρ1g (η−ζ). (2.27)

The contribution of the lower layer is given by

Player 2(ζ, z) =−ρ2g (H1 + z)+ρ2g (H1 +ζ)

Player 2(ζ, z) = ρ2g (ζ− z) (2.28)

By substituting equations 2.27 and 2.28 into equation 2.26, we obtain the
following expression:

P (z) = ρ1gη+∆ρgζ−ρ2g z. (2.29)

Mass Conservation

The concept of mass conservation dates back to 1789 when Antoine Lavoisier
established, through chemical reactions, that mass remains constant in an iso-
lated system; it is neither created nor destroyed. In fluid mechanics, this principle
holds, where the change in mass within a fixed control volume (C∀) must be
equivalent to the net mass inflow through its boundary conditions, known as the
control surface (S∀). Mathematically, this relationship can be expressed in the
integral form as follows:

Figure 2.15 System and control
volume configuration.

d

dt

∫
C∀
%d∀+

∮
S∀
%(n ·u)dS = 0, (2.30)

in which % is the density of the fluid, u ≡ ui is the velocity vector, and n is the
normal outward point for the surface segment dS.

The first term in equation 2.30 accounts for the rate of change of mass within
the control volume C∀, while the second term denotes the net inflow of mass. As
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the mass conservation equation is formulated in the Eulerian reference frame,
the total-time derivative can be moved inside the integral as a partial derivative.
Therefore, by applying this transformation and utilizing the divergence theorem,
equation 2.30 can be expressed as follows:∫

C∀

(
∂%

∂t
+ ∂%ui

∂xi

)
d∀= 0. (2.31)

Equation 2.31 remains valid for any arbitrarily large volume, which is only
possible if the integrand vanishes completely. Hence, we can deduce the follow-
ing:

∂%

∂t
+ ∂%ui

∂xi
= 0. (2.32)

Incompressibility

By employing the product rule, we can express equation 2.32 as follows:

D%

Dt
=−∂ui

∂xi
, (2.33)

in which the derivative D%/Dt represents the rate of density change experienced
by a fluid particle. It is important to note that this term is typically neglected
when the density remains constant under pressure variations. In such cases, the
flow is referred to as incompressible or solenoidal. Consequently, equation 2.33
simplifies to an incompressible form:

∂ui

∂xi
= 0. (2.34)

The density field does not need to be uniform in an incompressible flow. How-
ever, the crucial characteristic of an incompressible flow is that a fluid element
retains its density throughout its motion in the flow. This means that the density
of a fluid element remains constant over time. For instance, the flow in stratified
lakes can be regarded as incompressible despite the non-uniform density caused
by stratification.

Figure 2.16 Streamlines.

Imagine a fluid particle following a typical trajectory in a two-dimensional
space, influenced by a steady velocity field as depicted in Figure 2.16. In the fluid,
there exists an imaginary line tangent to the velocity vector at each point, which
is referred to as a streamline. Consequently, we can define a stream function ψ
that relates to the velocity components of the flow as follows:

%u = ∂ψ

∂y
and %v = ∂ψ

∂x
. (2.35)

In the case of incompressible flow, the stream function can be characterized
by the density of the fluid, denoted %. The relationship between the stream
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function and density can be established through the derivative of ψ(x, y), where
ψ is defined as the product of % and ψ:

dψ= ∂ψ

∂x
dx + ∂ψ

∂y
dy. (2.36)

Streamlines and stream function
The flow velocity can be expressed
through the vector potential ψ
such that

u =∇×ψ (2.37)

However, defining the stream
function ψ becomes more com-
plex when it involves multiple
components. As a result, the
stream function ψ is primarily
defined in axisymmetric three-
dimensional (3D) flows and in all
two-dimensional (2D) flows where
ψ has only one component,

ψ= (0,0,ψ).

If the velocity vector is a known
function, the stream function is
determined analytically by inte-
grating the equation 2.38.

Table 2.5 Stream function.

There are two approaches to obtain the stream function ψ(x, y). The first
method involves replacing dxi with the corresponding velocity field and consid-
ering dψ= 0 along a streamline. This approach leads to a linear, first-order partial
differential equation:

u
∂ψ

∂x
dx + v

∂ψ

∂y
dy = 0,

in which shows that streamlines are parallel to the velocity vector field, u ·∇ψ.
Another approach is to utilize the incompressible flow condition (Equation

2.34). When this condition is fulfilled, it implies the existence of a function ψ, as
described by equation 2.35. As a result, the stream function can always be defined
in the context of two-dimensional (2D) incompressible flows as follows:

dψ=−vdx +udy. (2.38)

Since along a streamline dψ= 0 so

dy

dx
= v

u
. (2.39)

Irrotationality

T In Section 2.2.3, we provide
the vorticity equation de-
rived from the momentum
equation. This equation fa-
cilitates the identification
of the forces responsible for
the generation or enhance-
ment of vorticity.

A fluid particle moving in a three-dimensional (3D) space, influenced by a ve-
locity field, can experience rotation due to viscous forces and variations in mass
density. To quantify this rotation, we use the concept of circulation (Γ), which is
a scalar integral quantity. Circulation is defined as the line integral of tangential
velocity components evaluated along a closed curve. The magnitude of circula-
tion represents the total vorticity, meaning that the circulation around a closed
contour corresponds to the enclosed vorticity. Mathematically, the rate of change
of circulation, obtained through the Stokes’ theorem, can be expressed as follows:

DΓ

Dt
= D

Dt

Ï
S

(∇×u) · n̂ dS, (2.40)

in which ∇×u is the vorticity.
Assuming a constant mass density and neglecting viscous forces, we can

deduce that
∇×u = 0, (2.41)

which implies that the flow is irrotational (ξ= 0), meaning there is no vorticity
present. Assuming an incompressible, inviscid, and irrotational flow, it suggests
the existence of a function that satisfies the conservation of mass and momentum.
This function is known as the potential velocity function φ, which is valuable
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as it reduces the velocity vector field to a single scalar function, introducing an
additional relationship to the problem:

ui =− ∂φ

∂xi
. (2.42)

Lines of constant φ are called potential lines and represent points of equal
pressure. In a two-dimensional (2D) space, the expression for the potential
velocity function φ(x, y) can be obtained by taking its derivative, similar to the
equation 2.36 for ψ(x, y). Consequently, as dφ = 0 along a potential line, the
expression simplifies to:

dy

dx
=−u

v
. (2.43)

Incompressibility and Boussi-
nesq approximation
While numerous books define an
incompressible flow as

∇·u = 0,

by employing the Boussinesq
approximation for mass conserva-
tion, it is possible to demonstrate
that the mean flow velocity, de-
noted as U , is

∂〈Ui 〉
∂xi

≈ 0,

for many fluid flows.
In other words, even in a com-
pressible flow, ∇·〈U〉 ≈ 0.

Table 2.6 Incompressibility consid-
erations.

Two-Dimensional Irrotational Flow

If the flow is irrotational and incompressible, equations 2.39 and 2.43 can be
combined, leading to

∂φ

∂x
= ∂ψ

∂y
, (2.44a)

∂φ

∂y
=−∂ψ

∂x
. (2.44b)

The system of differential equations represented by equation 2.44 is widely
recognized as the Cauchy-Riemann equations in the field of complex analysis in
mathematics. In the context of fluid mechanics, this expression takes the form
of ∇φ ·∇ψ= 0, which means that the potential lines are perpendicular (normal)
to the streamlines. It is worth noting that stream functions are not exclusively
associated with irrotational flows; they can also be used in the analysis of other
flow conditions.

To illustrate the physical meaning of these lines, consider steady-state water
flowing beneath a dam in permeable soil (Figure 2.17). The flow in porous media
is governed essentially by Darcy’s law (Equation 2.45). The smaller the flow length,
the higher the flow rate. Thus, the shortest streamline in Figure 2.17 has a higher
velocity than the second and third.

The cutoff structure reduces the pressure of the uplift on the heel of the dam
and erosion on the toe. Without the cutoff point, the flow rate would be higher,
leading to stronger erosion on the toe. If the pressure stays the same but the path
gets shorter, the gradient increases, speeding up the fluid. This loop can cause
the erosion to reach the reservoir, leading to a dam failure.
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Figure 2.17 Hydrodynamic flow net beneath a dam with an impermeable
cutoff.

2.2.2 Momentum equation

Darcy’s Law
Darcy’s law was formulated by
Henri Darcy in 1856 through a
series of laboratory experiments
to describe flow through granular
media. Darcy’s law states that the
flow rate is proportional to the
length of the flow, ∆x, and the
total pressure drop, ∆p:

Q =− k̃ A

µ

∆p

∆x
(2.45)

in which A is the cross-sectional
area of the flow, k is the hydraulic
conductivity and µ is the viscosity
of the fluid.
Although the equation of fluid me-
chanics had already been formu-
lated, Henri Darcy did not derived
it directly from the Navier-Stokes
equation. Actually, upscaling the
Navier-Stokes equations for flow
through a porous medium turns
out to be an extra viscous term,
a drag force term, due to the vis-
cous friction of the fluid with the
walls of the porous medium. This
theoretical homogenization gives
Darcy-Brinkman equation.

Table 2.7 Darcy’s Law and the flow
through porous media.

The principle of conservation of momentum asserts that the combined forces
acting on a fluid element result in a temporal change in its momentum. This
principle essentially applies Newton’s laws to fluid dynamics. The momentum
equations, also known as the Cauchy equations, describe the motion of any fluid
and can be expressed in a comprehensive form as follows:

∂%ui

∂t
+ ∂%ui u j

∂x j
= %(gi −2εi j kω j uk )+ ∂Ti j

∂x j
, (2.46)

in which, g is the acceleration due to gravity, Ti j is the stress tensor, and ω j =
2εsin

(
φ

)
is the inertial frequency, where ε is the angular frequency of the earth

and φ̄ is the mean latitude of the phenomenon. The stress tensor is defined as

Ti j =
(
− ∂P

∂xi
+Λ∂uk

∂xk

)
δi j +2%µ

∂Si j

∂x j
, (2.47)

where P is the total thermodynamic pressure and, Λ and µ are the dynamic
viscosity coefficients.

When the stress tensor Si j is written as a linear strain tensor rate (Newtonian
fluid),

Si j = 1

2

(
∂u j

∂xi
+ ∂ui

∂x j

)
, (2.48)

equation 2.46 reduces to the well-kown Navier-Stokes equation.
The left-hand side of the equation 2.46 represents the rate of change of mo-

mentum for a fluid particle, which must be equal to the sum of all forces acting
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on the fluid parcel (right-hand side of the equation 2.46). The rate of change in
momentum can be expressed using the incompressibility assumption (equation
2.34), leading to a simplified material derivative. Additionally, certain terms on
the right-hand side of equation 2.46 can be neglected as they have little impact
on the propagation of internal waves. In particular, based on the assumption of
incompressibility, the term involving viscosityΛ can be ignored.

Another term in the momentum equation that is frequently omitted is the
Coriolis force term. The angular speed of the Earth in equation 2.46 is directly
related to the Coriolis force, which deflects internal waves and affects their phase.
However, for small-scale processes, this term is often considered negligible. It
is worth noting that the Earth’s rotation can have significant effects on internal
waves, leading to the generation of internal Kelvin and Poincaré waves during
large-period motions. For now, we neglect the contribution of the Coriolis force,
but in Sections 6.1.5 and 6.2.6, we delve into the details of the Earth’s rotation and
its impact on wave acceleration.

Given all these simplifications, equation 2.46 reduces to the Navier-Stokes
equation,

%

(
∂ui

∂t
+u j

∂ui

∂x j

)
=− ∂P

∂xi
+%gi +µ∂

2ui

∂x2
j

, (2.49)

in which µ= %νu , where νu is the kinematic viscosity.
Equation 2.49 can be reduced even further by assuming an inviscid flow. In

this case, we find another well-known equation, the Euler equation:

%

(
∂ui

∂t
+u j

∂ui

∂x j

)
=− ∂P

∂xi
+%gi . (2.50)

Hydrostatic balance

In Section 2.2.1, we introduced the concept of hydrostatic pressure, which devi-
ates from the momentum equation in z-direction for a stationary system. How-
ever, in the presence of fluid motion, the dynamics of the flow can generate
additional pressure within the system. Therefore, the total pressure in the flow is
a combination of two pressures: the hydrostatic pressure p(z) and the dynamic
pressure p(x, t ).

P = p +p. (2.51)

Following a similar approach as in equation 2.51, we can define the density of
the fluid by considering contributions from both hydrostatic and dynamic effects
as follows:

%= ρ+ρ, (2.52)

in which ρ is the hydrostatic fluid density and ρ is the dynamic fluid density.
To simplify the analysis, it is often valuable to separate the hydrostatic and

non-hydrostatic contributions when deriving the governing equations of motion,
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such as equations 2.32 and 2.50. For instance, substituting equation 2.51 into the
Euler equation 2.50 in the z-direction yields the following expression:

%

(
∂w

∂t
+u j

∂w

∂x j

)
=− ∂

∂z

(
p +p

)
−ρg . (2.53)

Applying the hydrostatic solution, equation 2.24, we find

%

(
∂w

∂t
+u j

∂w

∂x j

)
=−∂p

∂z
− (%−ρ)g , (2.54)

in which p(x, t ) is the non-hydrostatic contribution for the total pressure.
Substitution of equation 2.52 into the Euler equation 2.54, gives

∂w

∂t
+u j

∂w

∂x j
=−∂p

∂z
− ρ

%
g . (2.55)

2.2.3 The vorticity on internal wave analysis

Although the density gradient in nature is typically continuous, numerous studies
adopt the use of homogeneous layers to represent stratified systems, as illustrated
in Figures 2.14 and 2.9. The real advantage of the layered model is that we can
make the irrotational flow assumption. Consequently, a velocity potential can be
defined, resulting in a reduction of variables in the problem.

Although the layered model often provides accurate predictions in many
scenarios, it is important to note that in a continuously stratified environment,
the flow is inherently rotational. This distinction is one of the key differences
between surface waves and internal waves. Surface waves exhibit an irrotational
flow, whereas internal waves involve rotational motion. This contrast becomes
more apparent when we examine the vorticity equation. By taking the curl of
each term in the momentum equations, the vorticity can be expressed as:

∂Ωk

∂t
+u j

∂Ωk

∂x j
= (Ωn +2ωon)

∂uk

∂xn
+ 1

%2 εpmk
∂%

∂xp

∂P

∂xm
+ν ∂2Ωk

∂x j∂x j
, (2.56)

in which the vorticity is generated by the second term on the right-hand side.
This term becomes non-zero when baroclinic effects significantly influence the
dynamics of the system, leading to the formation of internal waves. It serves as a
source of vorticity, indicating that a flow under the influence of baroclinic effects
is always rotational.

The first term on the right-hand side of equation 2.56 is called vortex stretch-
ing and tilting and is responsible for amplifying the vorticity, being more impor-
tant for turbulent analysis. The last term accounts for diffusion of vorticity as a
result of viscous effects. As we can note, for an inviscid flow, this term can be
neglected.

Indeed, it is important to note that, in an inviscid flow with baroclinic activity,
the second term on the right-hand side of the equation does generate vorticity.
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This implies that the irrotational flow assumption is not entirely valid for the
baroclinic mode. However, despite this limitation, the assumption of irrotational
flow still yields satisfactory solutions in numerous cases when studying internal
waves in lakes and reservoirs.

2.3 Introduction to turbulent flow

Turbulent flow is characterized by an unstable, irregular, chaotic, and seemingly
unpredictable motion that causes fluctuations in velocity, pressure, and other pa-
rameters (Figure 2.18). The classification of flow as laminar or turbulent is based
on the balance between viscous and inertial forces. When inertial forces outweigh
viscous forces, perturbations within the flow become intense and cannot be dissi-
pated by viscosity alone, resulting in flow destabilization. The Reynolds number
(Re) serves as a dimensionless quantity that is used to examine the flow pattern
and determine whether it is laminar or turbulent. It is defined as follows:

Re = uL

νu
, (2.57)

in which u is the velocity of the fluid, L is a characteristic linear dimension, and
νu is the kinematic viscosity of the flow. When Re > 1000, the flow is classified as
turbulent.

Figure 2.18 Tracer transport in laminar and turbulent flows. The streamline
ψ is parallel to the mean flow that has superposed a wide range of vortexes
with different scales.

Turbulent mixing plays a crucial role in the dynamics of stratified fluids. In
thermally stratified lakes, mixing processes arise from various sources. Small-
scale mixing originates from the breaking of internal waves. At the same time,
substantial turbulent mixing occurs in the presence of shear instabilities near the
bottom boundary layer, turbulent plumes, and gravity currents. Furthermore, the
interaction between deflected isopycnals caused by internal wave motion and
bathymetry can also contribute to turbulent mixing (Figure 2.19). These mecha-
nisms collectively shape the intricate patterns of turbulent mixing in thermally
stratified lakes.

A key feature of turbulent flows is the presence of a broad spectrum of spatial
and temporal scales. As depicted in Figure 2.18, turbulent flow consists of eddies
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ranging in various sizes. Some eddies are comparable in magnitude to the overall
flow width, while others are so minuscule that they cannot be visually discerned.
It is worth noting that as the Reynolds number increases, the turbulence length
scales of the flow become smaller. This relationship highlights the intricate
multiscale nature of turbulence.

The size of the eddies plays a crucial role in characterizing the turbulence
field. Initially, the turbulence kinetic energy (TKE) is predominantly concentrated
in large-scale eddies, influenced by the flow geometry and boundary conditions.
During this stage, the inertial forces outweigh the viscous forces, rendering the
influence of viscosity negligible. These large-scale eddies govern the mixing and
transport processes within the flow.

Large eddies, formed through non-viscous processes, exhibit length scales
that are comparable to the overall flow scale, ranging from `o to `e . This range is
called the production range, since it is where turbulent kinetic energy is primarily
generated (Figure 2.20). The Reynolds number associated with these largest
eddies (Reo) is typically large and similar in magnitude to the Reynolds number of
the overall flow (≈ Re). Due to the negligible effects of viscosity, the transfer rate of
kinetic energy from large eddies to smaller eddies is independent of viscosity and
is solely determined by flow parameters, specifically expressed as u3

o/`o , where
uo denotes the characteristic velocity (≡ u(`o) ≈U ).

Figure 2.19 Turbulent mixing in a
submerged ridge.

The interaction of large eddies leads to a cascade process in which energy is
transferred from larger scales to smaller scales. This phenomenon, known as the
nonlinear vortex stretching process, can be observed in the vorticity equation
(Equation 2.56). As large eddies break down, they generate smaller eddies through
this nonlinear process. These smaller eddies subsequently undergo a similar
breakdown, transferring their energy to even smaller eddies. This energy cascade
continues until it reaches the smallest scales of turbulence, where dissipation
occurs due to the influence of viscosity.

Figure 2.20 Length scales in turbulent energy cascade. The example shows
the size of the separated eddies along the flow field, but the region occupied
by the large eddies can also contain smaller eddies.

A significant portion of the kinetic energy generated by large eddies, approxi-
mately 90%, is transferred to smaller scales within the turbulence. In the range of
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eddies with turbulence length scales between `e and `d , the energy exchange be-
tween large and small eddies reaches equilibrium. This specific range is referred
to as the inertial sub-range. In this sub-range, the energy input from large eddies
is balanced by the energy transfer via inertial forces to smaller turbulence length
scales.

As the eddies become smaller in size, the viscous shear stress intensifies
because the viscous forces become relatively larger compared to the eddy size.
Consequently, this increased friction causes the dissipation of turbulent kinetic
energy, converting it into heat energy. The range of the smallest scales where this
dissipation occurs is called the dissipation range. This range has a characteristic
turbulence length scale `η, which is determined by the viscosity of the fluid:

Re` ≡
u(`)`

νu
,

in which Re` ¿ Reo , and consequently, viscosity plays a major role in energy
dissipation at this scale. The turbulent kinetic energy dissipation can be defined
as

ε= νu

(
uη
η

)2

, (2.58)

in which uη = (νu ε)1/4 is the Kolmogorov velocity scale and η is the Kolmogorov
length scale, the microscale of turbulence. Often η varies from 1 to 10 mm. The
Kolmogorov cutoff frequency is on the order of 10 to 100 Hz. The transfer of
turbulence energy across various scales, as shown in Figure 2.20, can be effectively
described by the turbulence spectrum. The turbulence spectrum provides insight
into the distribution of turbulent energy with respect to different length scales.
Typically, the length scale is characterized by the wavelength k, while the energy
associated with each scale is represented by the spectral density of the turbulence
(Figure 2.21). The turbulence spectrum enables us to analyze and understand the
distribution and behavior of turbulent energy across different scales within the
flow.

Figure 2.21 The turbulence spectrum (energy cascade).



36 Chapter 2 Stratified Flows

As discussed earlier, equations of motion are often simplified to a level where
analytical solutions can be obtained. For example, when the Cauchy equation
(Equation 2.46) is simplified to the Euler equation (Equation 2.50) under steady
and irrotational assumptions, we can easily derive an analytical solution known
as Bernoulli’s equation. In Chapter 6, we present the analytical solution for a free
surface and an interfacial internal wave using the unsteady Bernoulli equation
and the conservation of mass for an irrotational flow. In this scenario, a potential
velocity can be defined, facilitating the analysis and solution of the problem.

In fact, analytical solutions are feasible only for simple flow conditions. How-
ever, in many practical cases involving complex bathymetry, irregular boundary
conditions, and unsteady flows, the governing nonlinear partial differential equa-
tions cannot be solved analytically. Instead, computational fluid dynamics (CFD)
methods are employed to obtain numerical solutions. CFD tackles the problem
by discretizing the governing equations using techniques such as finite difference,
finite volume, or finite element methods. This discretization divides the flow do-
main into small control volumes or cells. Each cell is then treated as an algebraic
problem, typically solved iteratively, and the solution is obtained by solving the
resulting system of equations across the grid of cells. This numerical approach
allows for the simulation and analysis of a wide range of complex flow scenarios
that lack analytical solutions.

Figure 2.22 Small eddy size to re-
solve in a relatively large grid. To
resolve this turbulence scale, the
grid must be much smaller.

Undoubtedly, turbulent flows pose significant challenges due to the limita-
tions of simplifications typically employed in laminar flows. The presence of
eddies in turbulent flows requires the consideration of three-dimensional flow
behavior, deviating from the two-dimensional assumptions often applied in lam-
inar flows. Furthermore, the wide range of spatial and temporal scales present
in turbulent flows adds complexity to the problem. As mentioned above, as the
Reynolds number (Re) increases, smaller eddies form, leading to finer spatial and
temporal scales that must be resolved to accurately capture the complete flow
field. This requires utilizing a finer grid and smaller time steps to achieve a satis-
factory solution (Figure 2.22). These computational requirements underscore the
inherent computational challenges associated with simulating turbulent flows.

Indeed, the smallest length scales in turbulent flows can be on the order of
millimeters or even smaller. Consequently, the grid used to solve the flow field
must be smaller than these smallest turbulence length scales. When the entire
flow field is solved using a grid refined to be smaller than the smallest turbulence
scales, it is termed a Direct Numerical Simulation (DNS). DNS involves directly
simulating the flow by resolving all relevant scales of turbulence. However, the
main drawback of DNS is its high computational cost. Even at low Reynolds
numbers, the computational requirements are extremely demanding, exceeding
the capacity of even the most powerful computers available today.

Figure 2.23 Mean flow that can
be resolved and turbulence scales
that need to be modeled. To address the computational challenges associated with resolving the en-

tire range of turbulence scales, a commonly used approach is to separate the
time-dependent turbulent velocity fluctuations from the mean flow velocity and
assess the impact of these fluctuations on the flow. This technique is known



2.3 Introduction to turbulent flow 37

as the Reynolds Averaged Navier-Stokes equation (RANS). RANS allows for the
estimation of the mean flow by considering only the mean flow components
while accounting for the potential influence of turbulent velocity fluctuations on
the mean flow. By performing algebraic manipulations of the Reynolds-averaged
Navier-Stokes equation, we can analyze how the velocity fluctuations affect the
mean flow. This analysis then serves as a basis for modeling the influence of
turbulence on mean flow, enabling simulation of turbulent flows with reduced
computational requirements compared to direct simulation methods.

The presence of a wide range of eddies in turbulent flows introduces addi-
tional spatial and temporal fluctuations, resulting in enhanced mixing and energy
dissipation. The fluctuations of a generic quantity in a turbulent flow exhibit vari-
ations over space and time, and a significant portion of this variation is attributed
to stochastic processes arising from the eddies. To analyze these fluctuations, the
Reynolds decomposition technique is commonly employed. Through this decom-
position, a quantity χi can be split into deterministic and stochastic components,
such as:

χi (xi , t ;℘) = χ̄i (xi , t )+χ′i (xi , t ;℘), (2.59)

in which χ̄i (xi , t ) indicates the deterministic component of χi and χ′i is the fluc-
tuation due to stochastic processes of turbulence, a function of ℘ that belongs to
the sample space B . The expected value of this random variable χi is intuitively
given by the average of χi . Mathematically, we can write

χ̄i (xi , t ) =
∫
℘∈B

χi (xi , t ;℘) dP (℘) (2.60)

in which P is the probability density function. Note that if the mean flow is steady,
χ̄i is a constant over time (Figure ??).

Now, by applying the Reynolds decomposition (Equation 2.59) to the averaged
mass conservation and considering the property that the average of a sum of
derivatives is equivalent to the sum of derivative of the averages, we can express
the the mass conservation equation as follows:

∂ρ

∂t
+ ∂ρ(ui +u′

i )

∂xi
= 0.

Applying the product rule and considering ρ constant, we have

∂ρ

∂t
+ ∂ρ(ui +u′

i )

∂xi
= 0,

∂ρ

∂t
+ ∂ρui

∂xi
+
�
�
�
�7

u′
i = 0

∂ρu′
i

∂xi
= 0,

∂ρ

∂t
+ ∂ρui

∂xi
= 0,
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Dρ

Dt
+ρ∂ui

∂xi
= 0,

which since ρ is constant in time and space, we obtain a similar expression
T If you require further clarifi-

cation on the mathematical
manipulation between the
averaged terms, please refer
to exercise 2.7 for a detailed
step-by-step explanation.

obtained for the non-averaged equation (equation 2.32),

∂ui

∂xi
= 0. (2.61)

The subsequent step involves applying the Reynolds decomposition to the
averaged Navier-Stokes equation. To facilitate the analysis, it is advantageous to
consider each term of the equation separately.

Firstly, the transient term can be simplified to

∂ρui

∂t
= ∂ρ(ui +u′

i )

∂t
= ∂ρui

∂t
+
�
�
���

u′
i = 0

∂ρu′
i

∂t
.

Large eddy simulations
An alternative approach to both
RANS and DNS is the Large Eddy
Simulation (LES). LES lies between
RANS and DNS and is based on
the concept of filtering. In LES,
the method involves filtering out
the larger eddies and directly re-
solving them using the governing
equations, while the smaller tur-
bulence length scales are modeled
similarly to the RANS technique.
In other words, while the LES
method still requires a refined
temporal and spatial grid to cap-
ture certain turbulence-length
scales, the smaller scales can be
effectively modeled, reducing the
computational requirements com-
pared to DNS. The LES method
strikes a balance between accu-
racy and computational efficiency,
making it a valuable tool for simu-
lating turbulent flows.

Table 2.8 A Third optional to solve
tubulence problems.

Thus, we have

= ∂ρui

∂t
. (2.62)

The second term is the convective and nonlinear term defined as

∂ρui u j

∂x j
= ∂

∂x j

(
ρ(ui +u′

i )(u j +u′
j )

)
=

= ∂

∂x j

(
ρui u j

)
+ ∂

∂x j�
�
��
�*= 0(

ρui u′
j

)
+ ∂

∂x j�
�
��
�*= 0(

ρu′
i u j

)
+ ∂

∂x j

(
ρu′

i u′
j

)
= ∂

∂x j

(
ρui u j

)
+ ∂

∂x j

(
ρu′

i u′
j

)
. (2.63)

The pressure term is also decomposed by Reynolds decomposition. Thus, we
obtain the following:

∂P

∂xi
= ∂

∂x j

(
P +P ′

)
= ∂P

∂xi
+
�
�
���
= 0

∂P ′

∂xi
,

that results in

= ∂P

∂xi
. (2.64)

The gravitational term remains unchanged because it is not decomposed.
Variables ρ and g are constants in our equation. The next term that requires the
application of Reynolds decomposition is the viscous term. Hence, by referring
to the Navier-Stokes equation, we obtain the following:

∂

∂x j

(
µ
∂

∂x j

(
ui +u′

i

))
= ∂

∂x j

(
µ
∂

∂x j

(
ui +u′

i

))
,
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=µ∂
2ui

∂x2
j

+
�
�
�
��7
= 0

µ
∂2u′

i

∂x2
j

,

which, finally, we have

=µ∂
2ui

∂x2
j

. (2.65)

Reassembling the terms of the Reynolds Averaged Navier-Stokes equation
(equations 2.62, 2.63, 2.64, and 2.65) gives

∂ρui

∂t
+ ∂

∂x j

(
ρui u j

)
+ ∂

∂x j

(
ρu′

i u′
j

)
=− ∂P

∂xi
+ρgi +µ∂

2ui

∂x2
j

(2.66)

in which the second and last terms of equation 2.66 can be combined, leading to

∂ρui

∂t
+ ∂

∂x j

(
ρui u j

)
=− ∂P

∂xi
+ρgi + ∂

∂x j

(
µ
∂ui

∂x j
+ ρu′

i u′
j︸ ︷︷ ︸

Reynolds stress

)
. (2.67)

Please note that equation 2.67 resembles equation 2.49, with the exception
of the Reynolds stress term. This term signifies the influence of turbulence on
the alteration of mean flow. The Reynolds stress term represents the shear stress
generated by turbulence. In the case of internal waves, which typically exhibit
turbulent flows and therefore possess high Reynolds numbers (Re), they are
significantly impacted by this turbulence-induced shear stress. Consequently,
turbulent diffusion greatly exceeds molecular diffusion in this scenario,

µ
∂ui

∂x j
¿ ρu′

i u′
j , (2.68)

and consequently the shear stress caused by the friction of molecules may be
neglected.

The Reynolds tensor, Ri j , may be written similarly to the strain tensor, equa-
tion 2.48, as

Ri j =


ρu′2 ρu′v ′ ρu′w ′

ρv ′u′ ρv ′2 ρv ′w ′

ρw ′u′ ρw ′v ′ ρw ′2

 (2.69)

in which the main diagonal is the variances of the velocities fluctuation, whilst
other terms represent the covariance of the velocities fluctuation.

Dividing the main diagonal by two yields turbulent kinetic energy (TKE) per
unit mass:

ke = ρ

2

(
u′2 + v ′2 +w ′2

)
. (2.70)

The challenge of turbulence lies in the need to accurately model the Reynolds
stress, denoted as Ri j , in a similar manner to how we model the viscous stress
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Si j for Newtonian fluids. These effects are not directly resolved in simulations.
The approach involves solving for the mean flow and incorporating a turbulence
model to account for the turbulent term that emerges from the averaged gov-
erning equations (Figure 2.23). It is important to note that in this method, all
turbulence length scales are modeled to capture the influence of turbulence on
the mean flow, without explicitly solving for each individual scale.
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Exercises

Exercises for 2.1 Stratified Fluids

P2.1 A researcher conducted an investigation into the relationship between
water density and oxygen content in two distinct effluents. For each
investigation, the investigator developed their own equations of state,
which were derived from a series of laboratory experiments. The equa-
tions of state rely primarily on polynomial functions that estimate the
water density of the effluents, with temperature being the main input
parameter for these polynomial functions:

Effluent A: ρ =−0.0083τ2 +0.0661τ+1000.9
Effluent B: ρ = 6 10−5τ3 −0.0075τ2 +0.0507τ+1000.4

Considering that the temperature-oxygen solubility relationship is
given by

Osol = 0.0057τ2 −0.3823τ+14.586,

neglecting the interdependence between dissolved oxygen and salinity,
we found the oxygen solubility in mg/l for the maximum water density
in both cases. Also, what would you say about the difference between
each effluent.

PS: Estimate the maximum water density using a polynomial function
with two decimal places.

Exercises for 2.2 Theory of Stratified Flows

P2.2 Consider a typical scenario of incompressible flow occurring in a three-
dimensional space (x, y, z), where fluid particles move in response to a
steady velocity field (u, v, w). The velocity gradient,

∂v

∂y
,

is necessary approximately zero? Explain your answer.

Figure 2.24 Stratified reservoir.

P2.3 A hypothetical reservoir of surface area of 3.3 km² has a high concen-
tration of methane (CH4) and is thermally stratified during summer
with a well-mixed hypolimnion. Given the strong variation in den-
sity, the thermocline presents a reduced vertical turbulent diffusion
(D = 0.14 cm2/s). The reservoir has an inlet stream and an outlet, with
a flow rate of 1 m3/s. The inflow does not contain methane. Assuming
that the conditions shown in Figure 2.24 represent steady state, how
much is the flux of methane to the atmosphere?
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P2.4 In a two-dimensional, the fluid velocity components are given by:

u =−aωexp−kz+i (kx−ωt ) and w =−i aωexp−kz+i (kx−ωt ) .

Show that the flow satisfies the continuity equation and verify that the
flow is irrotational. If the flow is irrotational, obtain also the expression
for the velocity potential.

P2.5 Torricelli’s theorem states that the speed, denoted by u, of a liquid
flowing under the force of gravity out of an opening in a tank is jointly
proportional to the square root of the vertical distance, represented by
h.

Now, consider a thermal stratified freshwater reservoir that extends
over a significant distance, as shown in the accompanying figure. The
reservoir is equipped with a dam that has a gate near its base, posi-
tioned at a distance of h from the surface of the reservoir. Assuming a
stable stratification, apply the Navier-Stokes equation, with the gate
fully open, to find the velocity of the exiting water. Discuss the con-
tribution of stratification to water velocity and the limitations of this
application.

Figure 2.25 Stratified reservoir and
Torricelli principle.

P2.6 Show that for a Newtonian and incompressible fluid, the divergence of
the stress tensor is

= ρνu
∂2ui

∂x2
j

,

in which νu is the kinematic viscosity, ρ is the water density, and ui is
the vector velocity.

P2.7 Using equation 2.60 and considering φi = [1,2,3], βi = [5,4,3], φiβ j =
[[3,3,4][4,7,8][6,9,11]], find a solution for the following statements

φ′
iβ j ,

and
φ′

iβ
′
j ,

in whichφi andβ j are vectors that present stochastic and deterministic
components.

P2.8 Find the expression to describe the hydrostatic pressure along the
depth in a tank H deep, assuming an equilibrium position and a water
densityρ. Assume that the water surface may vary from the equilibrium
position followed by the function η.

P2.9 Considering the situation shown in figure ??, find an expression to
describe the distribution of hydrostatic pressure along the lower layer
assuming that ζ is an interfacial perturbation between both fluids.
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P2.10 Based on the hydrostatic pressure at the bottom of the tank from the
previous exercise (H = H1+H2), find the expression of the surface wave
in a fluid-density unstratified system ρ1 to have the same pressure at
the bottom of the tank. Assume that the total depth of water is the
same in both systems.
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Physical Limnology
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Exercises



Chapter 4

Experimental Methods:
Laboratory, numerical and Field
Observations

Over several decades, numerous researchers have been working to study internal
waves and explore their significant implications in various areas such as mixing,
turbulence, water quality, and biogeochemical cycles within lakes and reservoirs.
Research has been carried out in the main three branches: field measurements,
laboratory experiments, and numerical modeling.

Field measurements have played a crucial role in unraveling the complex
nature of internal waves. By directly observing and collecting data from lakes and
reservoirs, researchers have been able to gain valuable insights into the behavior,
characteristics, and propagation of internal waves in natural settings. These mea-
surements often involve the use of high-resolution sensors such as thermistors’
chains and Acoustic Doppler Velocimeters (ADVs). These data enable scientists
to acquire detailed information about the vertical and horizontal movement of
water, as well as their temporal and spatial variability.

In addition to field measurements, researchers have led experimental stud-
ies in stratified tanks under controlled conditions to examine basin-scale and
high-frequency internal wave patterns. Laboratory experiments help overcome
the difficulty in interpreting natural phenomena in the natural environment. Al-
though experimental analyses contain an element of abstraction, they frequently
allow us to examine a specific phenomenon that is often inaccessible through
field observation due to the complexity and coast of the underwater measure-
ments and the presence of uncontrolled natural perturbations. In these controlled
settings, researchers can precisely manipulate parameters such as density stratifi-
cation, wave amplitude, and reservoir size, allowing for a deeper understanding
of the underlying physical processes.

Laboratory experiments also offer the opportunity to conduct detailed mea-
surements using advanced imaging techniques and sensors, enabling researchers
to explore intricate details of wave behavior that may be challenging to observe

47
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directly in the field.
Numerical modeling has emerged as a powerful tool in studying internal

waves, allowing researchers to simulate and analyze complex wave phenomena
in a computationally efficient manner. By employing mathematical equations
that describe the fundamental principles governing fluid dynamics, numerical
models can recreate realistic scenarios and provide quantitative predictions of
the characteristics of internal waves. These models take into account various
factors, such as bathymetry, stratification profiles, and external forcing, to sim-
ulate wave generation, propagation, and interactions. Numerical simulations
not only aid in interpreting field measurements and laboratory results, but also
enable researchers to investigate scenarios that are difficult to replicate in real-
world settings, contributing to a comprehensive understanding of internal wave
dynamics.

By combining insights from field measurements, laboratory experiments, and
numerical modeling, researchers are gradually unraveling the intricate nature
of internal waves and their far-reaching implications (). These interdisciplinary
investigations serve as the foundation for advancing our understanding of mixing
processes in thermally stratified lakes and reservoirs.

4.1 Laboratory experiments

However, before introducing the technique used to study internal waves in labo-
ratory experiments, we devote the first subsection to exploring and reviewing the
well-known theory of dimensional analysis, which is extremely useful to make
comparisons between internal waves excited in small-scale experiments and real
lakes.

4.1.1 Dimensional Analysis

Dimensional analysis offers a method to reduce the complexity of a physical
problem, by looking at the relationships among the quantities that characterize
the problem studied, reducing the number of experimental variables. In ad-
dition, the dimensional analysis provides the scaling law, which evaluates the
equivalence between two phenomena that are actually different. Our goal here
is not to provide all details about dimensional analysis but to draw attention to
the importance of dimensional analysis on the study of internal wave propaga-
tion in controlled environments. For more details and a precise description of
dimensional analysis and scaling law, the reader should refer to book by ?.

Governed parameter

Suppose that we are interested in a governed parameter a1 that can be deter-
mined by n governing parameters ai , in which k is the number of independent
dimensions. This means that parameters between a1 and ak cannot be expressed
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as a product of powers of dimensions of other members,

g (a1, · · · , ak , · · · , an) = 0. (4.1)

However, the parameters of n −k can be expressed in terms of the dimen-
sions of the independent parameters, a1, · · · , ak . Mathematically, the system of
dimensions (k × (n −k)) is given by

[ak+1] = [a1]pk+1 · · · [ak ]rk+1

...
...

...
[ak+i ] = [a1]pk+i · · · [ak ]rk+i

...
...

...
[an] = [a1]pn · · · [ak ]rn

(4.2)

Dimensionless parameters

From system 4.2, we can define non-dimensional groupsΠi based on indepen-
dent governing quantities:

Πi = ak+i

apk+i

1 · · ·ark+i

k

, (4.3)

where i varies from 1 to n −k, which is the number of parameters that can be
expressed as product of power of the dimension of the independent parameters,
varying from ak+1 to an .

From equation 4.1 and 4.3, we have

f (a1 · · ·ak ,Πi apk
1 ) = 0 (4.4)

Substitution of equation 4.4 into equation 4.1 gives the non-dimensional equation

G (Π1, · · · ,Πn−k ) = 0, (4.5)

in which G is a general function of the non-dimensional parametersΠ, that are
constructed from ai by n − k dimensionless equations. Equation 4.5 may be
expressed as

Π= am1
1 · · ·amn

n (4.6)

where the exponents m are rational numbers.
This equation lead to the Π-theorem, also known as Buckingham theorem.

If there is a physical law that may be written as a relationship between dimen-
sional variables and several dimensional governed parameters, the relation can
be reduced through dimensionless products of quantities, in which the number
of products is equal to the difference between the total number of governing
parameters and those with independent dimensions (?).
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Example

Consider a breakwater built at near the coast to protect a coastline from wave
attack (Figure 4.1). The important variables to design the appropriate weight of
the rip-rap armour, Fs , are: water density, ρl , wave amplitude, a, wave period,
T , gravitational acceleration, g , slope of the breakwater, Θ, and density of the
rubble-mound material, ρs .

Figure 4.1 Breakwater near the coast to protect a coastline from the water
attack.

Selection ofΠ products

• The dependent variable
should not appear in more
than one non-dimensional
product;

• Controllable variables
should appear in only one
dimensionless product to
keep a reasonable experi-
mental control;

• No two repeating variable
can have the same dimen-
sion in aΠ group (However,
in the end of the analysis,
these variables must be
included as aΠ product).

• Just keep in the analysis
really important variables,
ignoring those that has
minor impact on the pro-
cess over the range being
examined;

• Standard dimensionless
products are useful. Try
to manipulate the expo-
nents to obtain them in the
Π products.

Table 4.1 Some considerations
about the selection ofΠ products
variables

Firstly, we can arrange the variables into a dimensional matrix given as

ρl a T g ρs Fs

M 1 0 0 0 1 1
L −3 1 0 1 −3 1
T 0 0 1 −2 0 −2

(4.7)

note that the angle of the breakwater is already dimensionless. This dimensionless
variable must be included into the non-dimensional products, even through it
can be left out of the dimensional analysis. From 4.7 and using the definition
expressed by equation 4.6, we have that

Π= ρm1

l am2 T m3 g m4ρ
m5
s F m6

s (4.8)

which shows that there are 6 governing parameters and just 3 independent di-
mensions. This means that there are 3 (n −k = 6−3) non-dimensional groups.
The theorem allows different combinations of variables to form different dimen-
sionless products, and does not provide any indication of importance between
products and variables. Thus, for eachΠ group must have a number of variables
equal to the number of dimensions. Table 4.1 presents some considerations to
chose correctly variables to the non-dimensional products.

From 4.7 and 4.8 we have

From M: m1 +m5 +m6 = 0
From L: −3m1 +m2 +m4 −3m5 +m6 = 0
From T: m3 −2m4 −2m6 = 0

(4.9)

Taking the advice from Table 4.1, we can define the first Π group as a function
of the dependent variable Fs . We also can set m1 = 0 and m5 = 0. Thus, from
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equation 4.8 and 4.9, the first non-dimensional product is defined as

Π1 = ρ0
l a−3T 0g−1ρ−1

s Fs = Fs

a3gρs
. (4.10)

The second group can include the wave period, since it has not appeared in
the first group. Setting m1 = 0 and m6 = 0 (since the Fs should appear in only one
product),

Π2 = ρ0
l a−0.5g 0.5ρ0

s F 0
s T =

√
g

a
T. (4.11)

The third group is formed through the variables with the same dimension,
water density and armor material density,

Π3 = ρ−1
l a0T 0g 0F 0

s ρ
1
s =

ρs

ρl
. (4.12)

Finally, the non-dimensional representation of the problem has the form

Fs

a3gρs
=G

(√
g

a
T,
ρs

ρl
,Θ

)
(4.13)

in whichΘ is an additional non-dimensional group.
Through equation 4.13, the relationship between allΠ groups can be tested

experimentally through laboratory experiments to predict how Fs varies due to
the variation of the non-dimensional groups.

4.1.2 Setup and Wavemaker

Frequently investigation of internal waves under controlled conditions are con-
duced in Plexiglas rectangular tanks of different sizes. Normally this studies are
carried out in tanks that vary from 3 to 21 m long. The tank height and width
normally vary from 0.1 to 0.6 m. Although density gradients in nature are always
continuous, greater amplitude internal waves normally arise near the region of
rapidest change in water density, region called pycnocline. Thus, many studies
have investigated the interfacial wave that propagates in a stable two-layer sys-
tem, in which upper and lower layers are completely homogeneous and present
small density difference (Figure 4.2). Many studies investigate experimentally the
propagation of interfacial solitary waves in a two-layer system (???). Laboratory
investigations also have studied the propagation of basin-scale internal waves in
continuous stratified rectangular thanks (Boegman et al., 2005b).

Figure 4.2 Hypothetical profile of
water density and an approxima-
tion to a two-layer system.

There are a number of methods to create a two layer system in rectangular
tank. Often, the tank is filled with liquids as carefully as possible to achieve small
thickness of the intermediate transition layer Hm (?). A large Hm modify the
internal wave structure and a simple two-layer model fails to reproduce greatly
the system dynamic. To generate the two-layer stratified system with a small Hm ,
the lighter fluid is added in a first step, whilst the denser one is injected slowly
underneath the upper layer in a subsequent stage. To a better visualization, a dye
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can be applied in the denser fluid before the injection. To minimize the thickness
of the density layer transition (Hm), a low flow rate of the density fluid isa required.
The flow rate can be increased just when the interface is completely formed and
far from the injection region.

There are also other techniques used to create a two-layer system. The tank
can be filled firstly with denser fluid, whilst the lighter fluid is injected slowly
through a floater, just above the denser fluid (Hutter, 2011).

Watch the video How to build 3.1 available on the supplemental material to
understand how to build a two layer system in a rectangular tank.

Í Video HTB 3.1 To simulate the hydrodynamic of shallow basin, which the metalimnion takes
up a relatively larger proportion of the total lake depth, a two-layer system can
be created through the lock-exchange procedure, explained in details in section
??. The strong perturbation may create a thicker intermediate layer. Often, for
experiments that tend to avoid a large interface thickness, hm/H < 0.15.

Í Video HTB 3.2 Evidences have shown that, considering a system with finite intermediate
layer (hm/H ≈ 0.2), after the interaction between internal solitary wave and
submerged obstacle there are a excitation of higher mode of transmitted and
reflected internal waves (?).

Through the advance of technologies to measure and visualize stratified flows,
more complex studies have investigate internal waves in continuous stratified
fluid, often through a linear stratification. A detailed historic review of laboratory
experiments in continuous stratified fluid is given by ?. A linear stratification is
normally achieved through the double-bucket method. This technique have been
described in details by ? and basically consists of two large vessels at equal height,
one filled with salt water and another with fresh water, connected with a U-tube,
initially closed through a clamp. Using the Bernoulli principle, the two-buckets
can be positioned in a determined height position in relation to the main tank,
the one that we want to create the linear stratification. The pipe can be placed in
the salt water bucket to conduce water into the main tank. To better control the
flow rate, a pump can be used (Figure 4.3).

Figure 4.3 Schematic diagram of apparatus and set-up used to produce a
linear stratification using the double-bucket technique.

The initial density of the seawater bucket is defined as our required maximum
water density, the water density of the tank bottom. In addition, to avoid salt
water rushing into the fresh water tank when we remove the clamp, for each gram
of salt added on the salt water bucket, one gram of fresh water must be added to
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the fresh water bucket.
When the pump is switched on and the clamp is removed, pump draws salt

water from the salt water bucket to the main tank. To keep the water levels in
both vessels, part of the water flows through the U-tube to the salt water bucket,
reducing the relative salt concentration. As the processes continues, the water
flowing out into the tank gets gradually fresher, creating a linear stratification.

To avoid mixing and turbulence on the water surface, the fresher water should
be spread out above the salter water by a sponge. inject the water in the main
tank (Figure 4.3).

To provide a direct visualization of the stratified system and enhance the
visibility of mixing events, colored dyes can be introduced periodically to the
floater during the filling procedure. This technique provides a good qualita-
tive visualization of the diapycnal mixing (?). However, the advancement in
computer-controlled devices has allowed the development of new non-intrusive
measurements, which provides a efficient quantitative analysis. The synthetic
Schlieren technique is one of the most applied methods to analyze stratified-flows
and described in details in section 4.1.3. The technique is based on automatic
processing of optical distortion of images caused essentially by density difference
(?).

4.1.3 Synthetic Schlieren Technique

Many laboratory experiment that studies the propagation of internal waves in
stratified system have been conducted in laboratory tanks colored by dye, in
which dye is applied in each interface, and the wave propagation is visualized
easily (). However, according to ?, the advancement in lasers and computer-
controlled devices have created valuable new non-intrusive measurements such
as particle image velocimetry (PIV), laser-induced fluorescence, shadowgraph,
and the synthetic schlieren technique.

Non-traditional schlieren tech-
nique limitations
Traditional schlieren methods
project a light beam into the cam-
era lens. Smartphone cameras has
a tiny aperture which ....

Table 4.2 Limitations.

In this section we pay a particular attention to the technique based on tradi-
tional schilieren method to visualize stratified system. Internal waves and other
motions that occurs in a stratified media made by the same fluid but with differ-
ent properties (e.g. temperature, salinity, pressure), does not present an evident
difference in color, however, due to the density difference, the refractive index of
the media may vary, refracting or bending light rays differently. The difference in
refraction is not easily detected by the human eyes and ordinary camera, but can
be evidenced by simple optical techniques.

The technique described in this book is a low-cost version () of the traditional
schilieren method which requires professional or DSLR cameras and has been
used by many authors to investigate the dynamic of internal wave and other
movements in continuous stratified fluids (). The simple technique described
here has been proposed by () and generated background-oriented schlieren (BOS)
images through Schlieren and shadowgraph techniques using simple smartphone
imaging and basic accessories and materials.
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4.2 Field measurements

4.2.1 Measurement Devices

The study of the hydrodynamics of stratified lakes is often a challenging task, as
it involves many different physical processes that can influence water masses,
heat, and biogeochemical transport. The hydrodynamics of these observation
motion in these environments is not possible through a dyed layer or the syn-
thetic Schlieren technique, commonly used in controlled settings. In lakes and
reservoirs, the prediction of water motion requires the utilization of different
fast response sensors. Typically, the motion of stratified flows is predicted by
analyzing the variations of temperature, pressure, and salinity, as these variables
are responsible for the stratification of the water density. In addition, advances
in technology have allowed for a better understanding of stratified flow patterns
through the prediction of water velocity fields. Furthermore, modern fast re-
sponse water quality sensors can be utilized to assess the impact of motion on
water quality in stratified fluids.

Although nowadays many fast response sensor are available in the market,
one of the simplest method to analyze the water quality and some important
property is through the Van Dorn Water Samples ??. The Van Dorn water sampler
is a horizontal transparent acrylic tube with double releaser, which can be closed
by the operator when it reaches the desired depth, insuring a representative water
sample at required depth. Some Van Dorn water samplers models have sensors
coupled to the device, such as thermometers and pressure sensors.

Figure 4.4 Thermocouples operat-
ing principles.

Although Van Dorn Water sampler is an efficient probe for sampling water
at different levels depth, the submerging process may cause disturbance during
the water sampling. Nowadays, there are many stationary instruments available
in the market to predict the hydrodynamic os stratified fluid and evaluate their
effect on the water quality. In the next section we present in more details some
sensor capable to describe the motion of stratified fluids. To measure directly the
field velocity of the water, one of the most used devices are: Acoustic Doppler ve-
locimetry and Acoustic Doppler current profiler. There are also other alternatives
since sensors based on Doppler principle are relatively expensive. To predict the
dynamic of stratified fluid, many times we measure the variables that influence
the stratification. As discussed earlier, temperature, pressure, and salinity. In
this section we present some sensor used to measure some of this variables. In
addition, we present a multi-parametric sensor extensively used in the study of
stratified fluids and low-cost sensors, which can be easily developed to better
understand the system dynamic.

Temperature Sensors

Temperature can be measured by many devices, such as infrared and liquid
in glass thermometers, thermocouples, resistive temperature devices (RTDs),
thermistors, and semiconductor IC. Trade-offs amongst devices include accuracy,
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sensitivity, cost, operating temperature range, and stability, which influence the
output signal drift over time, and consequently the need for repeat calibrations.

Liquid-glass thermometer is the most popular device to measure temperature.
Mercury thermometers, which was invented in 1714, consists of a bulb containing
mercury attached to a narrow glass tube, in which depending on the temperature,
the mercury expands or contracts. Based on thermal radiation principle, infrared
thermometer is also an option to measure temperature. However, since this
type of thermometer is based on the amount of infrared energy emitted by a
determined object, it can only measure the surface water temperature.

Thermocouples are devices to measure temperature by measuring a change
in voltage, a result of the Seebeck effect (Figure 4.4). Whenever there is a tempera-
ture difference along two wires, there is also an electric potential difference that
generates a magnetic field, and consequently the compass is moved to indicate
the temperature. The magnitude of this electric pressure depends on the wires
material. The relationship between voltage created by the conductors and tem-
perature is known for a large number of conductor pair, and have been largely
documented (Taylor, 1997). Even though thermocouples have a very fast response
to temperature changes, voltage signal in a majority of cases is nonlinear. They
are susceptible to corrosion and have worse long-term stability and accuracy than
the resistive devices.

Figure 4.5 Resistance versus tem-
perature for Platinum RTD and
Thermistors.

Resistive temperature devices (RTDs), also called resistance thermometers,
are devices to measure temperature based in resistance change, and have a
positive temperature coefficient. Most RTDs devices consist of fine coiled wire
wrapped around a ceramic core. Usually, the wire is made of pure metals such as
nickel, platinum, and copper. These devices are classified according to metal that
are used in their composition.

In the same way of thermocouples, RTDs have been largely documented ac-
cording to a large range of wires. RTDs are typically protected by a sheathed probe
since their elements are relatively fragile. RTDs provide an excellent long-term
stability. In the similarly way of thermocouples, resistance thermometers can be
affected by corrosion, converting the metal element from its pure form to a metal
oxide, which will tend to increase the wire resistance. When RTDs are made with
platinum, they are not susceptible to be affect by corrosion or oxidation. However,
Platinum resistance thermometers may be really more expensive. In addition,
although RTDs show an almost linear resistance-temperature relationship, the
temperature coefficient is really low (Herman, 2011). As a result, it does exhibit a
low change in resistance over a large change of temperature.

Another resistive device used to measure temperature is known as a ther-
mistor (portmanteau of thermal and resistor). Thermistors are made of ceramic
or polymer instead of metals, and have much higher temperature coefficients
than RTDs. Their resistance varies dramatically over some temperature range,
and are considered one of the most sensitive devices to measure temperature,
with sensitivities in the range of 3 to 6% (Figure 4.5). Thermistors are ceramic
semiconductors made from metal oxides which have an electrical resistance that
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decrease with temperature. Although thermistor can achieve great precision, the
temperature range is limited.

The last type of sensor discussed here is the 1-Wire digital temperature sen-
sors, which offer several valuable features such as linearity, high sensitivity with
9 to 12-bit precision, and small size. These devices are based on relationship
between the base-emitter voltage and the collector current of a bipolar transistor.
They are inexpensive, require no linearization, and can be interfaced directly on
micro-controllers, such as an Arduino Uno. In section 4.4, we provide a guide of
how measure continuous water temperature from a waterproof DS18B20 temper-
ature sensor (≈ $12) using a Arduino Uno R3 (≈ $20) (Figure 4.6).

Thermistor chain

In those early years after the observation of underwater temperature fluctuation
(Watson, 1903), Wedderburn and collaborators1 provided guidelines to spread
the knowledge about internal seiches in stratified basins through the first simulta-
neous recording of water temperature (with just one single point in depth) using
a underwater thermograph. However, even after continuous water temperature
measurements in a single point, many limnologists disbelieved that internal wave
could be important or even exist within thermal stratified lakes.

Figure 4.6 Waterproof DS18B20
temperature sensor and Arduino
UNO R3.

The phenomenon was doubted until 1952, when finally Mortimer (1952)
demonstrated their universality and importance using a thermistor chain, a pow-
erful device for continuous water temperature measurements at selected depths
(Figure 4.7). Nowadays temperature measurements collected from thermistor
chain are still the most common data analyzed through detect internal waves in
stratified basins of fresh-water (Hutter, 2011).

The thermistor chain frequently is placed in buoy stations, also called moor-
ings, which keep instruments in a specific submerged position. The surface buoy
is usually equipped with a data logger, which is responsible to recover sensors
data. To avoid movements and rotations due to internal and external forces,
ball-bearing swivels, anchors and rope are often used on the surface and near
the basin bottom. The thermistor chain is a long electrical cable containing tem-
perature sensors and connected to batteries and a host logger systems (Figure
2.8). Since internal waves can be excited in different depths, a several quantity
of temperature sensor along the vertical coordinate is essential. In spite of the
fact that a good spatial resolution is crucial for internal waves investigation, for
low-frequency waves of order of several hours, a low temporal resolution is not
required. Since most of time basin-scale internal waves have order of several
hours, generally data collection has order of minutes. ? investigated basin-scale
internal waves with period of ≈ 8 h in a small dendritic reservoir through a ther-
mistor chain with temporal resolution of 15 min. On the other hand, to investigate
high-frequency internal waves (∼ 10−3 Hz), internal wave breaking, and shear
instabilities (∼ 10−2 Hz), high temporal resolution for temperature sensor is cru-

1Wedderburn, Williams (1911); Wedderburn (1912); Wedderburn, Young (1915)
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cial to capture these high-frequency thermal oscillations (Boegman et al., 2003).
Thus, the temporal resolution of the sensor must be in the same order of the
phenomenon that is investigated. Generally, the sample frequency must be twice
the maximum Brunt-Väisälä frequency, Nmax , and 4 times the average of N for
the vertical profile.

Velocity measurements

Although isotherms analysis have been used extensively to identify internal waves
and to predict the dynamic of thermal-stratified system (Mortimer, 1952; Mün-
nich et al., 1992), nowadays internal wave is also identified through sensors
capable to measure the local field velocity of the water. Acoustic Doppler Ve-
locimetries, developed in the end of the 20th century, and the Acoustic Doppler
Current Profile are much more expensive devices than those used to measure
temperature. However, the field velocity may present a direct indication of the
dynamic of stratified system, with no secondary disturbances.

Figure 4.7 Thermistor chain.

For example, imagine a water surface submitted to a constant wind event.
Daily variation of water temperature occurs essentially due to the daily heat flux
at water surface and water movement, which can be associated to water cooling,
internal waves, turbulence, among others.

Due to the surface heat flux, warmer isotherms are typically eroded near
the midday, when the solar radiation is more intense. This variation does not
represent a water motion, but just a change in water temperature. The wind
that acts over the lake surface creates a mixing region that decrease the water
temperature located right bellow the water surface. This variation in temperature
can create a thermal instability that could promote a downward movement. This
motion is associated due to the density difference between colder water generated
by mixing at water surface. Figure ?? presents the isotherms and vertical velocity
of this hypothetical system. Note that the isotherm analysis is not so intuitive to
predict the motion of the system.

Acoustic Doppler Velocimeter

The Acoustic Doppler velocimeter was invented in the end of the 20th century. It
is based on the Acoustic Doppler Shift principle and measure the water velocity
in three dimension. The sensor has two main components: the acoustic sensor
module and the signal conditioning module (Figure 4.8).

The acoustic module is composed by one acoustic transmitter beam and three
receiver elements. The probe is submerged into the flow, where the transmitter
beam sends pulse of short acoustic waves. The pulse propagates through the
water. However, a fraction of the acoustic energy is scattered back by particulate
matters present in the sampling volume. The sampling volume is located approx-
imately 10 cm from the acoustic transmitter to avoid the flow interference. This
distance may vary slightly from probe to probe.

Figure 4.8 Acoustic Doppler ve-
locimetry (ADV).
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The three acoustic receiver detect the scatted acoustic waves originating from
the sampling volume. Due to the Doppler shift principle, the emitted acoustic
waves change in frequency. The Doppler shift observed at each acoustic receiver
beam is proportional to the field velocity of the water (?).

The signal conditioning module is responsible to control

Acoustic Doppler Current Profiler

Multi-parametric sensor

One of the most famous instruments developed for determining water properties
in lakes, reservoir, and oceans is known as CTD (an acronym for conductivity,
temperature, and depth) (Figure 4.9). Often this device is built with a fast response
Platinum RTD to measure temperature.

CTD device has a pressure sensor that measures the equivalent hydrostatic
pressure of the water above the sensor to calculate the total water depth. It is also
equipped with a conductivity sensor that measures true or specific conductivity. A
profiling CTD measurement is made when this device travels vertically though the
water. It is submerged until it hits the bottom. Many multi-parametric sensors
can make an average between the travel up and down to measure the profile
parameters.

CTDs have good spatial resolution, since are built with extremely fast response
sensors. However, usually it is operated manually and the time resolution of the
acquisition of each profile depends on the submerged time, what limits the
usage of these devices to detect internal waves. However, CTD measurements
are useful for calibrating the thermistor chain and providing information on
density dynamic of the system, since the contribution to density are not only
from temperature.

Figure 4.9 CTD - Crew of NOAA
Ship Miller Freeman (Source:
NOAA/Department of Commerce)

Salinity measurements

In most lakes and reservoirs, density stratification is dominated by thermal strat-
ification, and consequently water density is controlled by water temperature.
However, in most hydrodynamic experiments, the heat transport cannot be con-
trolled. Thus, in most cases, experimental analysis of stratified flow is conducted
in a channel where stratification is caused by salt concentration difference, also
called salinity difference. In addition, it is worth pointing out that salinity may
also influence the dynamic of internal waves in ocean, estuaries, and salt lakes.

Salinity could be defined as the total concentration of all dissolved salts in
a solution. Since the number of dissolved ions per volume influence positively
water conductivity, which express the ability of electrons to flow through the
solution, frequently the salinity is directly correlated to conductivity. That is why
seawater has high conductivity, and consequently higher density than the fresh
water. Although the number of the ions increase in seawater, the system remains
electrically neutral. This phenomenon occurs when electrolytes dissolve in water,
they split into cations and anions, but the concentration of each atoms remain
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the same. For example, consider the electrolysis of water and sodium chloride
solution (NaCl), one type of salt. When the NaCl is dissolved in water, they are
separated into different ions, Na+ and Cl−. In addition, the water molecules
undergo self-ionization, also called autodissociation, in which water molecule
are split into hydroxide ion, OH−, and hydrogen ion, H+.

NaCl −−→ Na++Cl− (4.14)

H2O −−→ H++OH− (4.15)

If the negative and positive pole of battery are connected through conducted wires
(electrodes) and they are submerged in water as shown in Figure 4.10, electricity
will pass through and between the electrodes. Thus, negative ions, anions, in the
solution will be attracted to the positive pole, anode, and vice versa.

Figure 4.10 Principles of water
electrolysis.

However, the ionization process produces two anions and two cations. There
are two possibilities of semi-reaction of reduction (cathode side) and oxidation
(anode side), which depends on the preferential discharge of ions. Firstly, since
H+ is more electropositive than Na+, the semi-reaction that occurs in the cathode
is

2H2O+2e− −−→ H2(g) +2OH−, (4.16)

whilst at anode, since Cl− is more electronegative than OH−, the semi-reaction
that occurs is

2Cl− −−→ Cl2(g) +2e−. (4.17)

Pure water electrolysis
The electrolysis of pure water is a
decomposition of water molecules
into hydrogen and oxygen gases
due to the passage of an electric
current.

2H2O+E −−→ O2 +2H2

Actually, since pure water has a
very high resistivity (≈ 18Ω/cm),
it requires excess energy in the
form of overpotential to speed up
the electrolysis. In other words,
the ions concentration of OH− is
extremely low to conduce rapidly
electrons. This means that any
applied potential is going to be
converted into thermal energy.
Note that tap water has higher
concentration of electrolytes, such
as sodium, potassium, and mag-
nesium, than pure water. Their
resistivity is ≈ 5 kΩ/cm, approx-
imately 1000 greater than pure
water.

Table 4.3 Electrolysis of water.

Equations 4.16 and 4.17 is a oxidation-reduction (redox) reaction that involves
a transfer of electrons between two species, in this case, from catode to anode. In
other words, reaction 4.17 shows that the chloride ion is oxidized to chlorine gas,
transferring electrons to the anode. Whilst, hydrogen ions capture electrons from
the cathode to form diatomic hydrogen molecule.

The global reaction is obtained through equations 4.14, 4.16, and 4.17,

2NaCl+2H2O −−→ H2(g) +Cl2(g) +2Na++2OH−, (4.18)

which H2(g) and Cl2(g) are produced at the cathode and anode, respectively. The
2 Na+ and the 2 OH− are combined to form 2 NaOH−

This ability of electrons to flow is called conductance, expressed as G and
frequently measured in Siemens, S. Since conductance is the inverse of resistance,
which are measured inΩ, sometimes the conductance is expressed in a reciprocal
form as f, that is equivalent to S. In this textbook we use the most common form,
in which is expressed with ’S’. The conductance is not a specific measurement
on its own, the measurement depends directly on the electrodes length, similar
with resistance. Thus, a larger electrode increases the contact area with ions, and
consequently rises the conductance.

The conductance is parameterized with the ratio between the conductors
distance, d , and the surface of electrode, A. This parameterization gives the
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electrical conductivity, expressed as

κ=G × d

A
, (4.19)

in which κ is the solution conductivity given in µS/cm, G is the conductance
given in µS, and the ratio d/A is the cell constant, Kcell, expressed in 1/cm, Figure
4.11.

Conductivity meters are delivered with certified cell constants, Kcell. The
choose of the best conductivity probe with a specific Kcell depends on the con-
ductance readings, and consequently on ions concentration. For a sample with
low conductivity, the electrodes can be placed closer or the surface area of elec-
trodes can be raised, which is the definition of a conductivity meter of lower cell
constant. The measurement accuracy is strongly influenced by the cell constant,
which needs to be selected appropriately for each application. Figure 4.12 shows
standard conductivity values for a set of samples and the range of recommended
cell constants for a given conductivity meter.

Figure 4.11 Sketch of a conductiv-
ity probe and how is defined the
cell constant, K .

Figure 4.12 Range of conductivity for three different cell constant. Pure
water has conductivity of approximately 0.1µS/cm.

The conductivity of a solution is measured through the potential difference
between the positive and negative pole. This measurement uses equation 4.19,
the principle of ohms law and the inverse relation between conductance and
resistance. Thus, the conductivity is given by the expression

κ= Kcell

Rsol
= Kcelli

Usol
, (4.20)

in which Rsol is the solution resistance, i is the electric current, and Usol is the
electrical potential of the solution. Note that Usol is similar to ∆U , the difference
between the input and output voltage.

When the salinity is based on a direct comparison with the specific conduc-
tance of a solution (conductivity ratio), the salinity is called practical salinity
and is expressed in psu (practical salinity units), which is dimensionless (Forch
Knudsen Martin e, 1901). A useful summary of equations used to calculate salinity
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from electrical conductivity is presented by Fofonoff, Millard (1983). However the
application is restricted to the range between 2 and 42 psu.

Recently, a new description to estimate salinity have been proposed, which
introduced the term: absolute salinity. According to ?, differently from the spe-
cific salinity, measured through conductivity cells, the absolute salinity uses the
thermodynamic properties of seawater.

Impact of temperature on con-
ductivity measurement
Conductivity depends on ions mo-
bility and electrolytes concentra-
tion, which means that is affected
not by salt concentration, but also
by temperature. As temperature
rises, the number of ions solution
increases due to dissociation of
molecules and also their mobility
in the solution, favoring the trans-
ference of ions between electrodes,
and consequently increasing the
conductivity. As stated by Gray
(2005), the relationship follows a
extremely nonlinear behavior for
natural waters, which implies that
a nonlinear temperature compen-
sation method must be used.
Different methods of tempera-
ture correction have been devel-
oped. Generally, the conductivity
is measured by using a tempera-
ture compensation at a reference
temperature of 20 ◦C or 25 ◦C ,and
can be measured by

κε = fε×κτ, (4.21)

in which κε is the conductivity
at the reference temperature ε,
κτ is the measured conductivity
at temperature τ, and fε is the
temperature correction factor for
natural waters. A list of tempera-
ture correction factors is provided
by ?. Attention: Many current
conductivity meters has a temper-
ature sensor and, in this case, the
correction is automatically applied
and the conductivity is displayed
at a reference temperature. Some
conductivity meters also offer a
specific temperature correction
method.

Table 4.4 Temperature compensa-
tion.

Described by Intergovernmental Oceanographic Commission, others (2015),
the new description of salinity is based on a Gibbs function, which represents
all properties of seawater in a consistent way with the thermodynamic state of
the system. Unlike specific salinity which has a unit in PSU, absolute salinity has
units of ppt (parts per thousand) or g/kg (mass fraction of salt in seawater).

4.3 Numerical models

4.3.1 Modeling of heat transport: Delft3D-FLOW

Although unidimensional internal wave models have been used to describe in-
ternal seiche patterns in thermally stratified lakes Lemmin, Mortimer (1986);
Münnich et al. (1992); Roget et al. (1997); Vidal et al. (2005); Carvalho Bueno de,
Bleninger (2018), they have several simplifications and cannot be used to describe
the whole process of heat transport associated with the internal wave field. The
simplified multilayer internal wave model neglects horizontal variability, includ-
ing effects of inflows, outflows, heat transport, mixing, and interaction between
internal wave and lake bathymetry. These limitations cause fundamental prob-
lems to describe the hydrodynamic of lakes and reservoirs, especially when we are
concerned with the internal wave field, which has different spatial and temporal
scales, and an intrinsic three-dimensional nature.

With an improvement in computational performance, three-dimensional
models of heat transport have gained prominent research interest because they
are capable of simulating processes in lakes by solving the full continuity, mo-
mentum, and transport equations. As with all numerical approaches, three-
dimensional hydrostatic models also have several limitations, mainly related
to the turbulence aspect. Due to numerical diffusion and dissipation Hodges
et al. (2006) and the inability of hydrodynamic models to deal with nonlinear and
non-hydrostatic mechanisms, the energy fluxes must be investigated carefully,
especially the mechanism of internal seiche damping Shimizu, Imberger (2008).
ELCOM and Delft3D are among the most well-known three-dimensional models
to simulate the dynamics of shallow-water systems, such as coastal regions, reser-
voirs, estuaries, lakes, ponds, and rivers. The basin-scale internal wave affected
by Earth’s rotation has been greatly stimulated by ELCOM Hodges et al. (2000);
Valerio et al. (2012) and Delft3D Dissanayake et al. (2019); Carvalho Bueno de,
Bleninger (2019); Kranenburg et al. (2020); Baracchini et al. (2020). Recently, obser-
vation has shown that Delft3D and ELCOM are significantly trained in simulated
large-scale internal seiches in lakes, which agrees well with field measurements
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in Upper Lake Constance Dissanayake et al. (2019).
Now we focus on the description of the three-dimensional Delft3D-FLOW

model, which is the model used in this thesis to simulate the hydrodynamics of
the lake. In the next section, we present the model description, paying special
attention to numerical approaches that may limit the applicability of Delft3D
to investigate the internal wave field, trying to make the connection with the
physical description discussed in section ??. A full description of the model is
provided by deltares2003delft3d.

Delft3D is a multidimensional hydrodynamic numerical model based on
Reynolds-Average Navier-Stokes (RANS) under the Boussinesq approximation
and shallow-water assumption. The program calculates the unsteady flow and
transport phenomena of heat and matter due to tidal and meteorological forces
by solving the equations of mass conservation, transport, and horizontal mo-
mentum, using a turbulence closure model Delft Hydraulics (2003). The vertical
velocity field is obtained implicitly from the continuity equation.

Governing equations

The depth-averaged mass conservation equation is obtained by integrating the
equation ?? along the water column, taking into account the boundary conditions
at the water surface and lake bottom:∫ η

−H

∂ui

∂xi
dz = ∂

∂xi

∫ η

−H
ui dz −ui (z = η)

∂η

∂xi
−ui (z =−H)

∂H

∂xi
= 0, (4.22)

in which η(x, y, t) and H(x, y, t) are the water level (surface function) and bed
horizontal plane of reference, respectively.

Assuming that the bathymetry does not vary with time, we may rewrite equa-
tion 4.22:

∂

∂xi

∫ η

−H
ui dz −ui (z = η)

∂η

∂xi
= 0, (4.23)

in which η and H are the water level above and the depth below a horizontal
plane of reference, respectively.

The kinematic boundary condition at water surface (z = η(x, y, t )) is defined
as

ui =
{

x2 −x1

∆t
,

y2 − y1

∆t
,
η(x2, y2, t2)−η(x1, y1, t1)

∆t

}
(4.24)

Expanding η(x2,Y2, t2) in a Taylor series:

η(x2, t2) ≈ η(x1, t2)+ (x2 −x1)
∂η(x1, t2)

∂x
+ (y2 − y1)

∂η(y1, t2)

∂y
, (4.25)

and substituting equation 6.9 into the vertical component of equation 4.24, we
obtain

w = ∂η

∂t
+u

∂η

∂x
+ v

∂η

∂y
, (4.26)
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in which ui =∆xi /∆t , where ∆xi is the grid size of each component and ∆t is the
time step.

Finally, substitution of equation 4.26 into equation 4.23 gives

∂η

∂t
+ ∂

∂xi

(
ui (η+H)

)
= 0. (4.27)

In Delft3D an additional term of source and sink per unit of area is added to
equation 4.27 to account for the contribution of inflows and outflows.

Delft3D solves the Reynolds Averaged Navier-Stokes equations (RANS) for an
incompressible fluid considering the Boussinesq approximation and the hydro-
static assumption in the vertical direction. Dividing the contribution of vertical
and horizontal eddy viscosities from equation ??, and applying the conservation
of mass and hydrostatic assumption:

∂ui

∂t
+u j

∂ui

∂x j
−ωouk =− 1

ρ

∂p

∂xi
+νh

∂2ui

∂x2
j

+ ∂

∂z

(
νv
∂ui

∂z

)
, (4.28)

in which ui is the Reynolds’ time-averaged velocity field, p is the pressure, ωo is
the inertial frequency, used to account for the contribution of the Coriolis effect.
νh and νv are the horizontal and vertical eddy kinematic viscosity (m2/s), respec-
tively. Recall that for the shallow water assumption, the momentum equation
in z-direction is reduced to the hydrostatic form since the vertical velocity is ne-
glected in the numerical procedure (w = 0). Once horizontal velocities have been
found, the vertical velocity is estimated by integrating the mass conservation
equation 4.27.

The transport of scalars and heat are governed by a multidimensional convection-
diffusion equation, which can be defined, in the orthogonal coordinates as

∂C

∂t
+ ∂ui C

∂xi
= ∂

∂xi

(
D
∂C

∂xi

)
+S, (4.29)

in which C is a scalar (e.g. heat, salinity, or constituents), S is sources and sinks
due to discharges and withdrawals, and D is the eddy diffusivity coefficient. For
the horizontal plane and the vertical direction, D = Dh and D = Dv , respectively.
The horizontal eddy diffusivity coefficient (Dh) is anisotropic along the horizontal
plane x-y .

In order to solve equations 4.28 and 4.29, Delft3D estimates the eddy viscosity
and diffusivity coefficients from the turbulence closure modules, discussed in
Section 4.3.1.

Heat flux model

The total flux of heat energy across the water surface is modeled according to the
heat balance illustrated in Figure 2.7. Delft3D-FLOW offers different heat flux
models Delft Hydraulics (2003) depending on the available meteorological data,
such as the Murakami heat flux model Murakami et al. (1985) and the Ocean flux
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heat model Lane (1989); Gill (2016). Observations in small thermally stratified
reservoirs have shown that the Murakami heat flux model underestimates the
energy loss by evaporation compared to the Ocean model Polli, Bleninger (2019).
Although this difference has been identified, the Murakami model was capable of
detecting Kelvin and Poicaré internal waves in Lake Constance Dissanayake et al.
(2019). Ocean heat flux model has been used in the Delft3D model to simulate
internal seiches Carvalho Bueno de, Bleninger (2019); Kranenburg et al. (2020).
Since both models have been capable to simulate internal seiches in lakes, here
we describe in detail only the Ocean heat flux model, which has been used in this
thesis. The Ocean heat flux model takes into account the following components
of heat:

Qtotal =Qsw +Qi r +Ql a +Qse , (4.30)

in which Qsw is the net heat flux from short wave, Qi r is the infrared (long wave)
heat flux, Ql a is the latent heat flux (phase change effect; e.g. evaporation), and
Qse sensible heat flux (temperature change effect; e.g. convection).

The net incident solar radiation (short wave) is the only term that is entirely
prescribed by the Ocean heat flux model 2. The absorption component of the
net incident solar radiation into the water column is computed from the albedo
coefficient Abs = 0.06, which reduces the magnitude of short wave that hits the
water surface

Qsw =Qi w (1− Abs) Fcc , (4.31)

in which Qi w is the incident solar radiation and Fcc = 1−0.40 Cc −0.38 C 2
c is a

function to take into account the influence of absorption of solar radiation by
clouds, where Cc is the user-specified fraction of sky covered by clouds. Equa-
tion 4.31 describes the balance between short wave radiation and water surface
radiation illustrated in Figure 2.7.

The infrared radiation (Figure 2.7) is calculated by Ocean heat flux model as

Qi r = 0.985 Ksb τ
2
water (K)(0.39−0.05

p
ea)(1−0.6 Cc ), (4.32)

where Ksb = 5.67 10−8 J/(m²sK4) is the Stefan-Boltzmann’s constant, τwater (K) is
the water surface temperature in Kelvin units, and ea is the vapor pressure, which
is defined as

ea = RH 10
0.7859+0.03477 τatm(řC )

1+0.00412 τwater(řC ) , (4.33)

where τatm is the air temperature, τwater is the surface water temperature, and
RH is the relative humidity (%), which can be specified by the user as a function
of time and space.

The latent heat flux is calculated by dividing the contribution into two factors:

wind-driven and buoyancy forces (Ql a =Qwind
l a +Qbuoy

l a ). The contribution due to
wind is calculated through Danton’s law of mass transfer Murakami et al. (1985):

Qwind
l a = Lν ρatm ce U10

(
qs −qa

)
, (4.34)

2Delft3D also provides an option that estimates the incoming shortwave radiation based on
geographical position and the local time of the simulated system
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in which Lν is the latent heat of vaporization (J/kg), ce = 0.0015 is the Dalton
number, U10 is the wind speed at 10 m height (m/s), and qs and qa are the specific
humidity of saturated and remote air, respectively. ρatm is the user-specified air
density (kg/m)3.

The contribution due to buoyancy forces to the evaporation rates Ql a is
caused essentially by the temperature differences, and is calculated based on the
principle of heat and mass transfer:

Qbuoy
l a = κsLνρatm

(
qs −qa

)
, (4.35)

where κs is the heat transfer coefficient (-) and ρatm is the average air density
(kg/m³).

The sensible heat flux is computed similarly to the latent heat flux, being split
into two contributions, wind forcing and buoyancy effect:

Qse = cpatm

(
τwater −τatm

)(
ρatm ch U10 +κsρatm

)
, (4.36)

in which cpatm = 1004 J/(kg K) is the specific heat of air at constant pressure,
ch = 0.00145 is the Stanton number, κs is the heat transfer coefficient (-) and
τwater and τatm are the surface water and air temperature expressed in Kelvin unit,
respectively.

Turbulence model

Since Delft3D is based on RANS concepts, which average all flow fluctuations,
the influence of turbulent fluctuation on mean flow can be modeled through
an implemented turbulence closure model, which determines νv and Dv . The
Delft3D model has four different turbulence closure models, including the κ-ε
and k −L models.

The κ-ε model is a second-order turbulence closure scheme that is based
on the balance between dissipation and production of turbulent energy, which
implies an equilibrium hypothesis under the boundary condition, P = ε. In-
vestigations have shown that the κ-ε turbulence closure model provides good
applicability to detect internal seiches in stratified lakes ?. However, vertical
mixing induced by shear and break of high-frequency internal waves is not ex-
plicitly taken into account in the κ-ε turbulence closure model implemented in
Delft3D Delft Hydraulics (2003). Furthermore, the energy of BSIW transferred to
high-frequency waves through degeneration processes is underestimated by the
Delft3D model Carvalho Bueno de, Bleninger (2019).

The vertical eddy viscosity (νv ) is defined as the combination of the molecular
viscosity and the maximum eddy viscosity coefficient comparing the result of the
turbulence closure model and the background vertical mixing that accounts for
all other forms of unresolved turbulence νback

v , which must be specified by the
user. For a strong stratified system, νv is reduced to the molecular viscosity, which
neglects the contribution of unresolved internal waves. To model the production
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of turbulence induced by the internal wave field, the vertical eddy viscosity must
be amplified. In Delft3D, propagating internal waves, which are susceptible to
being excited and breaking near the lakeshore, may not be explicitly taken into
account depending on the wavelength scale. The effect of these internal waves
can be taken into account through a constant background vertical eddy viscosity
coefficient.

The vertical eddy diffusivity coefficient Dv is obtained similarly to the viscosity
coefficient. In addition, for the 3D-turbulent closure model, the influence of
internal wave breaking is also taken into account in a strong stratified system by
the Ozmidov length scale (equation ??):

Dw ave
v = 0.2 L2

o N (4.37)

in which Lo is the Ozmidov length scale and N is the buoyancy frequency (equa-
tion ??). The vertical eddy diffusivity (Dv ) is determined as the maximum of the
vertical eddy diffusivity estimated by equation 4.37 and the 3D turbulence closure
model Uittenbogaard et al. (1992), which is also combined with the molecular
contribution. Note that the equation 4.37 defined in Delft3D uses a constant
mixing efficiency γmix = 0.2 (equation ??).

The horizontal components of the viscosity and diffusivity are calculated
based on the contribution of the sub-grid scale horizontal eddy viscosity/dif-
fusivity, background quantity, and the coefficients computed following the κ-ε
turbulence closure model.

To find all eddy coefficients, the user must specify the background vertical
eddy diffusivity (Dback

v ) and the background vertical eddy viscosity (νback
v ), which

are specified to take into account the contribution of vertical mixing associated
with internal wave breaking and shearing, and other mixing effects that are not
resolved by the turbulence model. The background coefficient should be of the
order of 10−4 to 10−5 m²/s for the diffusivity coefficient and 10−4 m²/s for the
viscosity coefficient Delft Hydraulics (2003). For fine grids (O (< 100 m)), Dh ≈ 1
to 10 m²/s, while for coarser grids, Dh may vary between 10 and 100 m²/s.

Numerical aspects

The full momentum, continuity, and transport equations in Delft3D are solved
based on a finite difference approach with the implicit method in alternating
direction Stelling, Duinmeijer (2003) using the Arakawa C-grid type of discretiza-
tion Arakawa, Lamb (1977), in which the water level is defined in the center of the
cell and the velocity components are specified perpendicular to the faces of the
cells. Delft3D follows the Courant-Friedrichs-Lewis (CFL) condition to guarantee
the stability of the model Smith et al. (1985)

Cr = 2∆t

√
g H

(
1

∆x2 + 1

∆y2

)
≤ 1, (4.38)

in which g is the acceleration of gravity, H is the total water depth, ∆t is the simu-
lation time step, and ∆x and ∆y are the grid size in x and y direction, respectively.
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It should be mentioned here that, since Delft3D uses an implicit scheme, even
for Cr > 1, the simulation is not unstable. The recommended limit to guarantee a
stable solution is Cr < 11 Delft Hydraulics (2003).

To keep small numerical diffusion, the horizontal advection term in the mul-
tidimensional convection-diffusion equation 4.29 is split into two second-order
central discretizations and a third-order upwind scheme (cyclic method).

The horizontal eddy viscosity must be specified by the user under the follow-
ing condition:

νh < ∆x2 ∆y2

∆t (∆x2 +∆y2)
, (4.39)

in which ∆t is the time step, and ∆x and ∆y are the grid size of the simulation in
x-direction and y-direction, respectively.

The model also requires a condition for the stability of baroclinic mode (inter-
nal wave propagation), which requires that

∆t

√
ρb −ρo

ρo

g H

4

(
1

∆x2 + 1

∆y2

)
< 1, (4.40)

in which ρb and ρo are the water density at the lake bottom and surface, respec-
tively.

4.4 Application

Engineers often design sensors to fit their exact needs. Today, there are countless
sensor devices to measure many types of physical, chemical, and biological
parameters.

4.4.1 Using Arduino

4.4.2 Temperature probe

4.4.3 Conductivity probe

In this section it shows how to construct a simple resistive conductivity probe for
continuous measurements, which fundamentally measure the water resistance
to the electrons flow continuously. The fundamental concepts of conductivity
meters have already been explained in section 4.2.1, here we present just the
procedure to construct the conductivity and some brief details. This device
should not be used to practical applications that requires high accuracy.

4.5 Interwave Analyzer
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Exercises

Exercises for 4.1.1 Dimensional Analysis

P4.1 The continuous action of a steady wind on the water surface of a lake
causes a vertical displacement of the water level, h. This setup is
influenced by the basin depth, H , the lake length parallel to the wind
direction, L, the water density, ρl , the gravitational acceleration, g , and
the shear stress of the wind, τ.

Applying the Buckingham theorem, find a relation for the setup.

Figure 4.13 Wind-setup

Exercises for 4.1.1 Dimensional Analysis

P4.2 Would solid NaCl conduct electricity ?

L4.3 Measure the thing in P ??.



Chapter 5

Signal and Data processing

5.1 Time series

5.2 Thermocline

The Schmidt stability (Equation 2.22), introduced in section 2.2.1, describes the
lake’s capacity to resist mixing because of density gradients and the water volume.

5.3 Spectral Analysis

Spectral analysis is a statistical technique commonly used for data analysis. In
this method, a time series is decomposed into a sum of sine components, which
reveals all the oscillatory components present in a given signal. By doing so, it
unveils oscillatory motions that might have been hidden in time series measure-
ments (Mortimer, 2004).

This technique transforms spatial and temporal patterns into frequency do-
mains, allowing easy identification of dominant frequencies in periodic time
series (Lin, 2012). When applied to the dynamic behavior of lakes, spectral analy-
sis of measured data (such as temperature and horizontal current) demonstrates
that lakes exhibit a complex mixture of oscillatory mechanisms. Some of these
mechanisms are waves, such as seiches and high-frequency internal waves, while
others may be purely random noises (Imboden, 2003).

Figure 5.1 Transformation of time
series to frequency components by
the Fourier transform.

To detect oscillatory responses in temperature and velocity data, spectral
analysis becomes a valuable tool. Spectral analysis allows us to identify dominant
periods in the oscillations of each component. Two spectral techniques that
are commonly used for this purpose are the Fourier transform and the Wavelet
transform. Using these spectral techniques, researchers gain insight into the
behavior of internal waves and the complex interaction between wind and water
dynamics in lakes and reservoirs. This comprehensive approach helps us better
understand these phenomena and their implications for the aquatic environment.

69
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5.4 Fourier Analysis

The Fourier transform is a mathematical technique used to decompose a function
of time into the sum of many sine or cosine components of different frequencies,
phases, and amplitudes (Chu, 2008). It provides valuable information on frequen-
cies, revealing dominant periodicities (Figure 5.1). The Fourier transform F of a
function f (n) is defined as (Greenberg, 2013)

F { f (n)} = f̂ (ω) ≡ 〈 f ,e−i 2π f n〉 =
∫ +∞

−∞
f (n)e−iωn dn, (5.1)

in which n represents time and the transform variable ω represents the frequency.
Given that we are dealing with a time series of measurements, our focus is

on the discrete view of the Fourier transform. The discrete Fourier transform
(DFT) can be obtained easily from the continuous transformation. In the discrete
transformation, we take N samples in the time domain and convert them into
N complex values n̂(ω) in the frequency domain. Thus, equation 5.1 can be
rewritten as

F { f (n)} = f̂ (ω) ≡
N−1∑
n=0

f (n) e−i 2πωn/N . (5.2)

Equations 5.1 and 5.2 demonstrate that the Fourier transform can be under-
stood as a convolution between a time signal and a series of sine and cosine
functions, or alternatively, as a matrix-vector multiplication of f (n) (Figure 5.2):

f̂ (ω) = e−i 2πωn/N ˙f (n).

Equation 5.2 yields the amplitude of the signal under analysis for a given
frequency ω. The combination of amplitudes for different frequencies provides
us with the spectrum of the analyzed signal. The frequency resolution is given by

∆ f = 1

Ts
(5.3)

in which Ts is the total time sampling. Multiplying ∆ f by the length of the signal
sample (N ), we obtain the maximum frequency at which the DFT is defined
( fmax =∆ f N ).

Figure 5.2 A N point DFT as a ma-
trix multiplication, in which each
curve is composed of real and
complex values.

However, due to the nature of the Fourier transform, equation 5.2 represents
the result of two phase vectors rotating around the complex plane, where the real
and imaginary components are orthogonal to each other. In fact, although the
real and imaginary components are out of phase, they are exactly the same in
magnitude, but with opposite signs, resulting in a conjugate symmetry around
fmax/2. Due to this symmetry, the signal produces data loss at frequencies higher
than fmax/2, which is a phenomenon known as aliasing. This occurs due to
overlapping processes, and it can distort the information contained in the signal
beyond the Nyquist frequency ( fmax/2). The lowest frequency that guarantees
that no data is lost is called Nyquist frequency, which can be expressed as:

fnyquist = fmax

2
= ∆ f N

2
. (5.4)
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Listing 22 shows the implementation of the DFT based on equation5.2. Note
that to obtain the total amplitude of each component, we should normalize the
DFT by 2/N .

In fact, due to the nature of convolution, which provides a sum of components,
we must divide this sum by the number of samples (N ). Additionally, since
the Fourier transform is two-sided symmetrical and we are interested in the
single-sided spectrum, we must multiply the Fourier transform by 2. This step is
necessary to account for the contributions of the signal on the other side of the
spectrum. By taking these factors into consideration, we obtain an accurate and
normalized representation of the single-sided spectrum, eliminating redundancy
and preserving the relevant information of the signal in the desired frequency
range.

1 import numpy as np
2

3 def dft_slow(t,y):
4 dfx = []
5 N = len(y)
6

7 dt = t[1]-t[0] # time resolution
8 Ts = N*dt # total period
9 frq = np.arange(N)/Ts # spectrum (frequency axis)

10

11 for k in range(N):
12 df = 0
13 for n in range(N):
14 M = np.exp(-2j*np.pi*k*n/N)
15 df += y[n]*M
16 dfx.append(df)
17 return dfx,frq
18

19 ffx, freq = dft_slow(t,y)
20 dft = [2*i/N for i in ffx] # normalization

Listing 5.1 Algorithm to compute the discrete Fourier transform (DFT).

For example, consider a stationary time series lasting 770.5 h (approximately
32 days). The signal represents the unit length and is given in meters. It has a
mean value of 15 m and consists of two cosine functions with strong random
noise, leading to a maximum displacement of ±5 m. The time series is sampled
every 1800 sec (see Figure 5.3a). The two main fluctuations in the signal have
periods of 2 h and 5 h, and both oscillatory components have an amplitude of 1 m.
Due to the presence of strong noise, it is challenging to distinguish the existence
of harmonic components in the time series. To reveal these components, we need
to apply a spectral method. One way to obtain the time-series spectrum is by
using the discrete Fourier transform algorithm (Listing 22).

The right part of the spectrum lacks valuable information due to the conjugate
symmetry of the Fourier transform. It essentially mirrors the spectral energies
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present in the left part. To avoid redundancy, this side of the spectrum is ignored
and to compensate for the omitted data, the Fourier transform is multiplied by a
factor of 2 (Figure 5.3b).

Additionally, when plotting the amplitude, we use the modulus to focus solely
on the magnitude of the harmonics without concern for their phase differences.
Consequently, in the DFT plot of the signal shown in Figure 5.3b, we observe
two positive peaks, representing the cosine functions that were added to the
original signal. It is important to note that the noise introduced into the signal
does not contribute to any periodic component. Instead, it only adds noise to the
spectrum, without showing any discernible pattern.

Figure 5.3 a) Time series of a hypothetical signal and b) spectrum associ-
ated with this signal, obtained by listing 22.

Recall that the two cosine functions added to the signal had an amplitude
of 1 m. However, in Figure 5.3b, we can observe a slight difference for each
component. This effect is attributed to two significant factors: spectral leakage
and the noise present in the data.

In the discrete Fourier transform, both the time and frequency domains
are circular topologies, meaning that the two endpoints of time are connected
together. Spectral leakage occurs when the frequency does not exactly match
the corresponding bin, resulting in a misalignment. In other words, when the
integer number of periods does not fit within the acquisition time interval. As a
consequence, energy from the signal leaks into other frequencies, leading to an
increase in spectral energy at neighboring frequencies around the main peak. The
primary peak is often referred to as the main lobe, while the energized frequencies
surrounding it are known as side lobes. It is important to note that spectral
leakage always reduces the spectral energy of the main peak, as a portion of the
energy gets distributed to the side lobes.

Figure 5.4 Example of the spectral
leakage.

Another effect that can reduce the accuracy of spectral peaks is noise. Noise
may introduce inaccuracies in the spectral peaks due to its contribution to har-
monics during the convolution performed by the Fourier transform. To address
this issue, we introduce in Section 5.4.3 the concept of the windowed Fourier
transform, a technique used to average segments of the Fourier transform. Al-
though this technique is effective in mitigating noise-induced inaccuracies, it can
also lead to increased spectral leakage.

In Section 5.4.3, we dive into the windowed Fourier transform and discuss
how to handle the issue of spectral leakage that arises when performing this type
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of transform.
By now, we shift our focus to the conjugate symmetry of the Discrete Fourier

Transform (DFT) to accelerate the algorithm. As we know, the right part of the
spectrum, which was obtained using Listing 22 and shown in Figure 5.3, was
completely ignored. However, any additional information regarding the spectral
energy can be valuable for its calculation, making the computation of this ne-
glected portion of the spectrum unnecessary. Taking advantage of the inherent
symmetry of DFT, Cooley, Tukey (1965) proposed a faster algorithm to calculate
the spectral energy of a signal.

5.4.1 Fast Fourier Transform

Spectral leakage and the effect on
frequency band
Peaks located close to the high-
est and lowest frequencies may
exhibit greater spectral leakage
due to the abrupt transition at the
signal’s end. This sudden discon-
tinuity generates high-bandwidth
frequency content, leading to a
broad-band spectrum, and caus-
ing some of the energy to leak. As
seen in our example, this effect
is evident in the 5 h− frequency
oscillation, where a more pro-
nounced and energetic side lobe is
observed, consequently reducing
the amplitude of the main peak.

Table 5.1 Spectral leakage.

The Fast Fourier Transform (FFT), initially proposed by Cooley, Tukey (1965),
takes advantage of the inherent symmetry of the DFT to eliminate redundant
calculations. This technique substantially reduces storage requirements and
computation time, operating on the order of N log2N instead of N 2 complex
multiplications. The FFT accomplishes this by breaking down the calculation into
two discrete Fourier transforms of length N /2, one with even and the other with
odd subscripts:

n =
{

2r for n even

2r + 1 for n odd

in which 0 < r < N /2. The fast Fourier transform F of the function f (n) is defined
as

F { f (n)}k =
(N /2)−1∑

r=0
f (2r ) e−2iπk(2r )/N +

(N /2)−1∑
r=0

f (2r +1) e−2iπk(2r+1)/N .

=
(N /2)−1∑

r=0
f (2r ) e−4iπkr /N

even-indexed

+e−2iπk/N
(N /2)−1∑

r=0
f (2r +1) e−4iπkr /N

odd-indexed

. (5.5)

The FFT operates on the principle that the DFT of a sequence with N data
points can be obtained by combining the DFTs of its two halves. By splitting
the DFT into two parts, as shown in Equation 5.5, we can compute the DFT of
two shorter signals, effectively reducing the computation to N 2/4. However, we
can achieve even greater computational efficiency by applying this technique
iteratively as long as the Fourier transforms have an even value R, leading to
a significant reduction in computational cost to N log2 N . The reduction in
computational cost compared to the standard DFT is proportional to the length
of the signal, as illustrated in Figure 5.5.

Figure 5.5 Comparison between
the computational cost of DFT
and FFT, implemented in the list-
ing 22 and 5.4.1, respectively.

In this case, where the DFT is split into two interleaved DFTs, we refer to the
FFT as radix-2. Radix-2 FFT requires that the time series length be of a power of
two, as it computes the DFT in log2 N stages. In Listing 5.4.1, we present a simple
and efficient implementation of a radix-2 FFT based on Equation 5.5. Although
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radix-2 is the most common type of FFT, there are other radices, such as radix-4,
where the DFT is divided into four parts, which require fewer calculations stages
than radix-2. However, the limitation with radix-4 is more stringent, as the length
of the signal must be a power of four.

1

2

3 def fft_recursive(y):
4

5 N = len(y)
6

7 if N == 1:
8 return y
9 else:

10 Feven = fft_recursive([y[i] for i in range(0, N, 2)])
11 Fodd = fft_recursive([y[i] for i in range(1, N, 2)])
12

13 ff = [0] * N
14 for m in range(0,int(N/2)):
15 ff[m] = Feven[m] + np.exp(-2j*np.pi*m/N) * Fodd[m]
16 ff[int(m + N/2)] = Feven[m] - np.exp(-2j*np.pi*m/N) * Fodd[m]
17

18 return ff

Listing 5.2 Fast Fourier transform

In our previous example, we applied the signal to the FFT implemented as
shown in Listing 5.4.1. Since the signal must now have a length that is a power of
two, we reduced the time series to only the first 512 h (≈ 21 days). As observed,
the resulting spectrum is exactly the same as that calculated by the standard DFT,
which was implemented in Listing 22. However, the execution time of the algo-
rithm is significantly faster (approximately 150 times faster than the DFT; Figure
5.6). The Fast Fourier Transform completed the calculation in 0.042 sec, while
the previous DFT implementation took around 6 sec to complete the process. It
is important to note that as the signal becomes shorter, the difference in time
consumption between DFT and FFT becomes less pronounced (Figure 5.5).

Figure 5.6 The spectrum of time
series of temperature obtained
through the radix-2 FFT, imple-
mented in the listing 5.4.1.

Indeed, while the FFT implemented in Listing 5.4.1 provides notable advan-
tages and is faster than the standard DFT, many computing packages in various
programming languages offer their own pre-implemented functions for FFT,
which can be significantly faster than the radix-2 implementation shown here.
These optimized FFT packages not only exploit the symmetry of DFT, but also
utilize techniques like sub-computation reuse, resulting in substantial improve-
ments in FFT performance. Moreover, some of these packages employ general
factorization methods, enabling them to compute FFT even when the length
of the data is not a power of two. In Python, for instance, the Numpy package
provides the fft function, which is highly efficient and capable of performing FFT
computations on various input lengths.
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When applying the FFT implemented in Listing 5.4.1, we encountered the
need to shorten the signal length to reach a power of two, resulting in some data
loss. However, a technique is commonly employed to extend the length of the data
without introducing any new spectral information, known as zero padding. This
technique involves adding zeros to the end of the signal, effectively increasing
its length to the nearest power of two, while preserving the existing data and
avoiding any loss.

5.4.2 Zero-padding

Zero padding involves the addition of extra zeros to a data sample. Its primary
purpose is to increase the signal length to the nearest power of two, which can sig-
nificantly improve the performance of the FFT based on the algorithm proposed
by Cooley, Tukey (1965). However, the benefits of zero padding extend beyond
simply reaching the next power of two signal lengths. Zero padding can also be
advantageous in reducing spectral leakage. By appending zeros to the signal, you
effectively interpolate the data and increase the frequency resolution, resulting in
a narrower main lobe and lower sidelobes in the frequency domain. This, in turn,
reduces spectral leakage and improves the accuracy of spectral peaks in the FFT
output. Therefore, zero padding is a valuable technique not only for achieving
the desired signal length for efficient FFT computation but also for enhancing the
frequency resolution and mitigating spectral leakage, leading to more accurate
frequency domain analysis.

This approach can lead to an increase in the number of frequency bins, result-
ing in a more closely spaced spectrum. The sharper fluctuations in Figure 5.7b
illustrate this effect. Although zero padding does not directly enhance frequency
resolution, it can yield a smoother spectrum, making it easier to visually identify
isolated dominant frequencies. Additionally, since zero padding can alter the
interval between frequency domain samples, the energy may be better aligned
with an FFT bin, reducing spectral leakage and enhancing the accuracy of en-
ergy estimation. In particular, in Figure 5.7, the application of the zero-padding
technique is evident by the much sharper peak in the moving average of the PSD,
indicating a reduction in spectral leakage.
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Figure 5.7 a) Signal spectrum assuming the shortened data and b) Signal
spectrum of the signal zero-padded to the next power of two. The red line
indicates the moving average of the amplitude.

As mentioned earlier, when dealing with noise in spectral power estimation, a
common technique used is the Windowed Fourier Transform.

5.4.3 Windowed Fourier Transform

The windowed Fourier transform (WFT), also known as the short-time Fourier
transform (STFT), serves to decrease the variance of power spectral estimations.
To achieve this, the WFT divides the signal into multiple equal segments and
applies a window function to each segment. This windowing assumes stationarity
within the segments. Consequently, the window function, denoted g , is shifted
by ς along the timeline, and a Fourier transform is computed for each segment,
revealing the Fourier spectrum in each segment. Finally, the global spectrum of
the signal is obtained by averaging all individual segment spectra. This technique
allows for a more reliable and accurate representation of the signal’s frequency
content, particularly in the presence of noise or time-varying characteristics. This
technique decreases spectral variance and is expressed as a simple convolution
between signal and window,

F { f (n)} = 〈 f , gn,ω〉 =
∫ +∞

−∞
f (n) g (n −ς)e−i 2πωndn. (5.6)

The STFT can be computed using the code provided in Listing ??, which
includes the STFT function and the rectangular window function used for signal
convolution. Rectangular window is a commonly used window type in STFT
computations and is the most general case. It can be represented as a normalized
boxcar function that zeros out the signal data outside the window. In this way, the
FFT is performed in segments of the total signal, as illustrated in Figure 5.8. The
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rectangular window serves as a straightforward approach for STFT computation
and is often used for its simplicity and ease of implementation.

In Figure 5.8, the signal is divided into three short segments (A to C), and the
FFT is performed on each segment independently. Each individual periodogram
exhibits two peaks followed by noise fluctuations. The noise arises due to random
signals and does not represent any meaningful harmonic component.

By taking the average of all the individual periodograms, we obtain a smoother
periodogram. This averaging process effectively filters out noise fluctuations,
providing a more reliable representation of the underlying signal’s frequency
content. The peaks in the averaged periodogram are more pronounced and
accurate, as they reflect the true harmonic components present in the original
signal, while the noise is diminished through the averaging process. This process
enhances the quality of spectral estimation and allows for a clearer and more
accurate analysis of the signal’s spectral characteristics.

Figure 5.8 Example of the convo-
lution of the window function and
the signal to the STFT computa-
tion for a segment of the time se-
ries (using a rectangular window).

1 def stft_square(y,r,dt):
2

3 size = int(len(y)/r)
4

5 f_new = []
6 ff_new = []
7

8 for i in range(r):
9

10

11 y_new = y[int(i*size):int((i+1)*size)]
12

13 N = len(y_new)
14 Ts = N*dt
15

16 ff = 2*abs(np.fft.fft(y_new))/N
17 f = np.arange(N)/Ts
18

19 ff_new.append(ff)
20 f_new.append(f)
21

22

23

24 return f_new, ff_new

Listing 5.3 Short-time Fourier Transform

Indeed, when we divide the time series into multiple segments for STFT
computation, each segment’s signal length becomes shorter. This can increase
the influence of sudden transitions or discontinuities at the end of the signal. As
a consequence, spectral leakage is more likely to occur, leading to an increase in
the energy that leaks into neighboring frequencies.

When applying the STFT with a window size of N /3 to the time series of the
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previous example, we observe three periodograms, each representing a period
in which the FFT was applied (Figure 5.9a). It should be noted that decreasing
the size of the window results in the signal being divided into a larger number of
segments, potentially producing more periodograms in Figure 5.9a.

Figure 5.9 b shows that the averaging technique aids in reducing spectrum
variance, resulting in a reduction in noise fluctuation. However, this technique
may increase the degree of spectral leakage due to discontinuities that arise from
sudden transitions at the signal endpoints.

To mitigate the effect of discontinuities and reduce spectral leakage, it is pos-
sible to employ a smoothing method that gradually reduces the energy near the
endpoints. This approach helps to decrease the amplitude of discontinuities, and
consequently decreases the spectral leakage. One common technique involves
convolution with a window function that exhibits a lower amplitude near the
signal’s endpoints. For example, performing a convolution between the signal
and a Gaussian function can achieve the desired smoothing effect, resulting in im-
proved spectral estimation and a more accurate representation of the underlying
signal’s frequency content.

Figure 5.9 a) Periodograms from three segments were obtained from a
rectangular function of size N /3. b) Global periodogram (averaged peri-
odogram) for different window sizes. The red line indicates the FFT per-
formed without a window, whilst the light and dark blue lines show the WFT
performed with a signal split into 10 and 5 segments, respectively.

There are several types of window function available and each is suited to
different types of application. The most common windows used are the Hamming
and Hanning (also called Hann) window functions (Figure 5.10).

Hamming and Hanning are families of window functions known as raised
cosine, both featuring sinusoidal shapes with low side lobes that effectively ad-
dress the energy leakage effect in the Fourier transform. Some studies have
suggested that the Hamming and Hanning window functions are more suitable
for narrowband signals (Gao, Yan, 2010).

The main difference between the two lies in the handling of discontinuities.
The Hanning window removes all discontinuities, resulting in a faster side-lobe
roll-off decay rate. Consequently, it may not handle the nearest side lobes well,
but it performs better with other lobes that are not too close to the main lobe.
However, the Hamming window has a slower side-lobe roll-off decay rate, leading
to higher spectral leakage. However, it excels in dealing with closely spaced peaks,
making it more appropriate for closely spaced internal waves (internal waves
with closed periods). The Hamming window can effectively cancel the closest
side lobe in such scenarios (Figure 5.10).

Often, the Hanning window is adequate for identifying internal wave activities
in most cases, as it strikes a good balance between spectral energy and frequency
accuracy. While many internal wave studies employ these cosine windows, there
is no consensus on the best windows to identify internal waves. Certain appli-
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cations in internal wave studies have utilized different windows to discern the
response of the periodic oscillation.

Often, windowing techniques are used to smooth the signal near the end-
points, reducing discontinuities. However, this smoothing process can also lead
to data loss, resulting in an underestimation of the spectral energy. To address
this distortion and correct the amplitude and energy, we need to apply the win-
dow correction factor, which is determined by the specific window type that was
applied. The amplitude correction factor (ka

window) is defined as:

ka
window = Nwindow∑

g (n)
, (5.7)

in which Nwindow is the window size (number of points) and g is the window
function. For the Hamming window, ka

window ≈ 1.85.
Figure 5.10 depicts the Short-Time Fourier transform applied to the previous

signal using various window functions. For clarity, we remove the noise from
the signal to facilitate interpretation of the results. Notice that the Hamming
window function effectively reduced spectral leakage. However, it also led to
some data loss caused by the convolution with the window, resulting in a lower
spectral energy than the expected value. To compensate for this discrepancy, the
entire spectrum should be multiplied by the amplitude correction factor. This
correction factor ensures that the energy estimation accurately reflects the true
spectral energy in the signal.

Figure 5.10 Example of Hamming
and Hanning window functions
and how they deal with spectral
leakage.

Figure 5.11 Short-time Fourier Transform windowed by the rectangular and
Hamming functions (window size of N /4 points) without correction factor.

Although many internal wave studies use cosine windows, there is no con-
sensus on the best windows to identify internal waves. Specific applications of
internal wave studies have employed different windows to analyze the period
oscillation response. For example, Ostrovsky et al. (1996) utilized a short flat-top
window in temperature measurements to study internal waves on a small scale,
while Stocker et al. (1987) applied a split cosine bell window to analyze long in-
ternal seiches in lakes. Carvalho Bueno de et al. (2020) compared the use of two
different window functions (Flattop and Hamming windows) to identify internal
seiches in a small thermally stratified reservoir from a thermistor chain.

It should be noted that the flat-top window preserves the amplitude of the
signal but squeezes the data, necessitating the analysis of a larger amount of data



80 Chapter 5 Signal and Data processing

(Smith, 2013). As such, the flat-top window is more recommended for analyzing
high-frequency internal waves when periodic data last for long periods. The
choice of the window function depends on the specific characteristics and goals
of the analysis, and it is essential to carefully consider the trade-offs between
resolution and data requirements for a particular study.

5.4.4 Overlapping process

Since convolution between a window function and a signal can lead to data loss,
the overlapping sliding window method is a common technique used in STFT to
mitigate this issue. It is important to note that the overlapping technique does not
correct the spectral energy lost as a result of convolution. However, it ensures that
the energetic harmonics, which may be present at the endpoints of a segment,
are not neglected (Figure 5.12).

Figure 5.12 Data segmentation and overlapping sliding window technique.
Note that the oscillatory energy associated with the red solid curve would
be neglected if the overlapping technique was not applied.

Figure 5.13 Corrected short-
time Fourier transform win-
dowed by the Hamming window
function with size of N /4 and
50%-overlapped.

The overlapping sliding window method involves dividing the signal into
overlapping segments for analysis (Figure 5.12). The optimal overlap percent-
age (Loverlap) is determined by the chosen window function. For wide windows,
such as Hamming and Hanning windows, a commonly recommended overlap
percentage is 50%. Conversely, narrower window functions often require a higher
percentage of overlap. The recommended overlap percentages for each win-
dow function are well documented in the literature (Heinzel et al., 2002). This
technique ensures that important information at segment boundaries is not
overlooked and contributes to more accurate and reliable spectral analysis.
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5.4.5 Non-stationary Signals

The Fourier transform commonly assumes that the analyzed signal is stationary,
meaning that the spectral components persist with the same frequencies and
amplitudes throughout the analysis period. However, many natural time series
exhibit non-stationary behavior, which includes most of the natural physical pro-
cesses, such as internal waves. The internal wave field may vary over time, leading
to the generation and dissipation of waves with different time scales depending
on the analysis period. Consequently, even numerical and experimental studies
investigating the generation and dissipation of internal waves excited from a
single wind event (Carvalho Bueno de et al., 2023; ?; Horn et al., 1998; Boegman
et al., 2005a) may not fully adhere to this assumption, as internal waves dissipate
over time.

For example, a study conducted on Lake Arendsee (Germany) analyzed six
months of data to identify different types of internal waves, including internal
seiches with higher vertical modes Bernhardt, Kirillin (2013). In another case,
within 9 days, the internal wave field identified in Lake Bala was reenergized three
times, causing significant fluctuations in the internal wave amplitude over time
(Simpson et al., 2011a). Consequently, the spectral content of non-stationary
signals may evolve and fluctuate, challenging the traditional stationary analysis
methods.

Due to the convolution in the Fourier transform, the spectral energy may
be underestimated when the harmonic components do not have consistent am-
plitudes throughout the entire analysis period. This leads to an inaccurate es-
timation of the spectral energy. When the Fourier transform is normalized by
the number of samples, it assumes that the spectral energy is equally distributed
throughout the period, resulting in lower-amplitude oscillations (Figure 5.14).
This phenomenon is particularly evident in non-stationary signals where the
spectral content changes over time, leading to fluctuations in the spectral energy.
As a result, traditional stationary analysis methods may not accurately capture
the dynamic nature of such signals.

Figure 5.14 The effect of Fourier transform in a non-stationary signal.
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The simplest approach to analyze non-stationary signals is to compute the
mean and variance for different time periods and examine if the statistics signifi-
cantly differ. One commonly used method is the short-time Fourier transform
(STFT), which assumes that the signal is stationary within each segment where
the FFT is performed. Unlike Listing 5.4.3, the spectrum of each segment in
STFT is not averaged to obtain a global spectrum. Instead, this non-averaged
representation provides valuable information on both time and frequency and
is referred to as a spectrogram. Each spectrum in the spectrogram represents
the spectral energy associated with the specific subperiod in which the FFT was
performed. This enables us to observe how the spectral characteristics of the
signal change over time, making the spectrogram a powerful tool for analyzing
non-stationary signals.

In our previous examples, the noisy signal consisted of two periodic functions
with an amplitude of 1 m, persisting throughout the analysis period. Now, we
consider a different scenario where the signal is composed of a dominant oscilla-
tory response lasting for 10 h during the last 10 days, and a transient harmonic
component varying from 2 h to 4 h during the initial part of the period (Figure
5.15a). Figure 5.15 b shows the global spectrum of the signal, corrected with the
amplitude correction factor of 1.85. Despite the correction factor, the amplitude
of the 10 h peak is still underestimated due to the non-stationary nature of the
time-series. When segments are averaged, it leads to a global reduction in spectral
energy, as illustrated in Figure 5.14.

In fact, transient oscillations are challenging to detect in the global spectrum.
However, Figure 5.15c presents the STFT for each individual segment, providing
valuable insight into when each harmonic component exhibits higher energy. The
periodogram clearly reveals the transient component varying from 0.00012 Hz
to 0.00004 Hz, as well as the 10 h component occurring during the final 10 days
of the analysis period. The STFT’s time-frequency representation effectively
highlights the variations in spectral energy over time, allowing for more precise
identification of different harmonic components present in the non-stationary
signal.

The STFT technique effectively addresses the time localization problem by
identifying periods in which harmonic components are excited. However, a signif-
icant challenge with STFT is the inconsistent treatment of different frequencies,
which is commonly referred to as Heisenberg’s uncertainty principle. This prin-
ciple states that there is a fundamental trade-off between time and frequency
resolution in signal analysis. When trying to achieve better time localization,
frequency resolution is compromised, and vice versa. As a result, STFT may not
offer an optimal balance between time and frequency precision, making it less
suitable for certain applications where both high time and frequency resolution
are crucial.
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Figure 5.15 Spectral analysis of a noised non-stationary signal. a) Time-
series of the non-stationary signal, b) the spectrum of the signal-based
windowed Fourier transform (10 averaged windows), and c) the spectrum of
the signal for each window along time.

The uncertainty principle is closely related to the time-frequency resolution
(Millette, 2011). This challenge arises from the presence of an aliased spectrum
that falls outside the frequency range of the selected window (Gubbins, 2004).
When the window size and type are chosen, the time-frequency resolution re-
mains constant, meaning that satisfactory resolution can only be achieved in
either the time domain or the frequency domain, but not both. When the window
size is kept fixed, the time-frequency resolution depends solely on the window
size and type. Consequently, a key aspect of the problem lies in the fact that at
high periods, there are few oscillations within the window, resulting in a loss of fre-
quency localization. On the contrary, at low periods, there are many oscillations,
leading to a loss of time localization.

An alternative approach to overcome Heisenberg’s uncertainty principle is
to use the Wavelet transform, which offers improved capabilities in analyzing
different frequencies. The wavelet transform incorporates a scaling parameter
that allows for varying the window size to analyze each frequency component
effectively. This flexibility in window size enables wavelet analysis to achieve a
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better balance between time and frequency resolution.

5.5 Advancing processing

5.5.1 Power Spectral Density

As mentioned above, the harmonic amplitudes estimated by the Fourier transform
rely heavily on the frequency resolution of the signal. This implies that they will
vary depending on the size of the signal. Although this can pose a challenge when
analyzing a single signal, it becomes even more problematic when comparing
two or more signals of different sizes (Figure 5.16). To address this issue, we
introduce the Power Spectral Density, a widely used technique to investigate
internal waves (Gloor et al., 1994; Vidal et al., 2013; Rozas et al., 2013; Bouffard
et al., 2016; Carvalho Bueno de et al., 2023; ?, 2020).

Figure 5.16 Fast Fourier transform and power spectral density of two sig-
nals with the same harmonic component but different size. a) Fast Fourier
transform for 1024 (blue) and 2048 (red) data points. b) Power spectral den-
sity for the same two signals.

The key aspect of the Power Spectral Density (PSD) lies in the normalization
of the energy value to the width of the frequency bin. This normalization enables
a meaningful comparison between time series of different lengths. Additionally,
each frequency bin is multiplied by its complex conjugate. The power spectral
density is expressed as energy (square amplitude) per frequency (width).

One significant advantage of this process is the reduction of differences in
spectral energy. Formally, PSD can be obtained by calculating the ratio of the
sampling frequency to the mean square power spectrum. The mean-square
power spectrum, in turn, is obtained through the Fourier transform of the auto-
covariance function,

φ f f (ω) =φ∗
f f ×Ts ≡ Ts

N
|F { f (n)}|2. (5.8)

in which φ f f (ω) is the PSD of the function f (n), φ∗
f f is mean-square power

spectrum of the function f (n), Ts is the sampling period, and N is the length of
the signal.
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In their work, Welch (1967) introduced an improved estimator of the Power
Spectral Density (PSD) known as the Welch method. This method incorporates all
of the techniques described above. By combining Short-Time Fourier Transform
(STFT) with PSD estimation, the Welch method reduces the variance of the spec-
tral density, albeit at the expense of a lower frequency resolution in the resulting
estimate.

The technique involves the following steps: first, the time-series data is di-
vided into segments. Then, window convolutions and overlapping techniques are
applied to these segments. The segments are then averaged to obtain a smoothed
estimate. To compute the power spectral density of the signal, the averaged seg-
ment is squared and then normalized by the frequency bandwidth. This process
results in an improved estimation of the PSD.

To calculate the energy content within a specific frequency band (spectral
variance), we integrate the spectrum over the corresponding frequency band-
width. This integration process involves summing up the spectral values within
the designated frequency range. By doing so, we can determine the total en-
ergy associated with those frequencies. This approach allows us to quantify the
strength or intensity of the signal within the specified frequency band, providing
valuable insights into its characteristics and behavior:

EPSD( f ) =
∫ f

fo

φ f f (ω)d f . (5.9)

5.5.2 Phase and Coherence Analysis

Another significant analysis commonly utilized to examine internal waves is co-
herence and phase analysis. Coherence analysis is a method designed to measure
the correlation between two or more signals in terms of frequency. Provides
correlation values for each frequency (Figure 5.17).

Coherence analysis is a common method used to assess whether two or
more isotherms are influenced by an internal wave (Vidal et al., 2013). It also
serves to identify periods with potential resonance between internal waves and
wind forcing. For example, in the tropical Andean reservoir, high coherence
was observed over a 24-hour period between internal seiche activity and wind
forcing, suggesting the occurrence of wave-wind resonance with potential wave
amplification (Posada-Bedoya et al., 2019).

The phase is often obtained for higher coherence harmonics, allowing for the
determination of the phase lag between two signals in radians for each frequency.
This analysis offers valuable insights into the relationships and synchronization
between different signals, helping to understand their interactions and behavior.
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Figure 5.17 Sketch of phase and coherence analysis between two signals.
The coherence is high when both signals present high energy in the same
harmonic component. The phase indicates a 90 ◦ out-phase response be-
tween signals 1 and 2.

Coherence can be obtained using the mean-square power spectrum of two
signals and the cross-power spectrum, φ∗

f g . The cross-power spectrum is the
Fourier transform of the cross-covariance function, given by

φ∗
f g (ω) =

∞∑
k=−∞

1

N −1

N∑
n=1

( fn − µ̄ f )× (gn − µ̄g )e−iωk ω ∈ [−1/2,1/2], (5.10)

where µ̄ f and µ̄g are the means of each signal. The coherence, or mean square
coherence, between two signals f and g is given by

C f g (ω) =
∣∣∣∣ φ∗

f g (ω)√
φ∗

f f (ω)φ∗
g g (ω)

∣∣∣∣2

∈ [0,1], (5.11)

in which φ f g is the cross-power spectral density (CPSD) of the signal f (n) and
g (n), and φ∗

f f and φ∗
g g are the mean-square power spectrum of functions f (n)

and g (n), respectively.
The coherence function provides correlation values ranging from 0 to 1, with

a value of 1 indicating a perfect linear relationship between the signals. This fea-
ture is particularly valuable for establishing correlations between internal waves
and other variables that may be periodically influenced by internal wave activity.
Numerous studies have used coherence analysis to investigate the relationship
between underwater temperature and wind speed, revealing the presence of reso-
nance between baroclinic motion and the wind blowing above the lake surface
(Münnich et al., 1992; Posada-Bedoya et al., 2019).

Using coherence analysis, researchers have shown that the amplitude growth
of basin-scale internal waves in lakes, resulting from resonance with wind events,
can exhibit different growth behaviors depending on the mode of the internal
wave and the basins where baroclinic activity is observed (?). This analysis tech-
nique has proven to be a valuable tool in understanding the interactions and
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influences of internal waves on various environmental factors, shedding light on
the dynamics of these phenomena in different settings.

When combined with coherence analysis, phase-shift analysis becomes a
powerful tool for detecting higher vertical baroclinic modes and determining the
longitudinal extension of internal waves. Phase analysis is frequently employed
to identify the occurrence of internal seiches with higher vertical modes, as
these modes are characterized by different layers flowing in opposite directions,
leading to an out-of-phase response in thermal fluctuations. For example, studies
conducted at Mono Lake identified a high coherence between temperature data
across the water column at a frequency of 22 h−1 (Vidal et al., 2013). This finding
suggests the presence of internal seiches with higher vertical modes in the lake.

Phase-shift analysis calculates the phase lag between two signals ( f and g ) in
radians for each frequency and is defined as follows:

P f g (ω) =
Re

{
φ∗

f g

}
Im

{
φ∗

f g

} ∈ [π,−π]. (5.12)

In this equation, the numerator represents the cross-spectral density between
signals f and g , while the denominators represent the spectral densities of signals
f and g , respectively. Phase-shift analysis allows us to understand the temporal
relationship between the two signals at different frequencies.

Figure 5.18 displays the coherence and phase shift between two noisy time se-
ries, both exhibiting dominant periods of 5 and 2 h. The 5 h component oscillates
in-phase, while the 2 h component is 90◦ out-of-phase. As expected, coherence
indicates a higher spectral correlation for frequencies 5 and 2 h; however, due to
the presence of noise in our data, several higher coherence peaks appear in the
spectrum.

To appropriately address the significance of spectral peaks and coherence, we
calculate the phase shift only for harmonic components with coherence greater
than 80%. Phase shift analysis reveals that the oscillatory response of the 1/2 h−

frequency is approximately 90◦ out of phase, whereas the 1/5 h− frequency com-
ponent oscillates almost in-phase between the two signals.

Figure 5.18 Coherence (blue) and phase shift (red) between two time series.
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5.5.3 Significance level

In many cases, when performing spectral analysis in various natural time series,
the peaks may not be as distinct as those depicted in Figure 5.3. Often, significant
peaks could be only slightly higher than the background spectrum noise, making it
challenging to discern them clearly. To ensure a consistent approach to determine
which peaks are truly significant, it is essential to base our analysis on statistical
methods that can quantify the significance of spectral quantities.

The significance of spectral peaks can be estimated by performing a chi-
square test on the mean red noise spectrum of the time series (Bernhardt, Kirillin,
2013). This test allows us to determine whether the observed spectral peaks devi-
ate significantly from what would be expected under the assumption of red noise.
By comparing the observed spectrum to the mean red noise spectrum, we can ob-
jectively identify which peaks are statistically significant. This approach provides
a robust and reliable method to assess the presence of significant periodicities or
frequencies in time-series data and is frequently adopted in the wide literature
(Vidal et al., 2013; Ahmed et al., 2014; ?; Carvalho Bueno de et al., 2020, 2023).

First, we need to calculate the one-lag autoregressive coefficient of the ana-
lyzed signal ( f (t )) (?):

ρlag =
∑i=1

N−1

(
f̄i f̄i+1

)
∑i=1

N

(
f̄ 2

i

) , (5.13)

in which f̄i = fi − f̄ and N is the length of the signal.

Why do we use the red noise ?
The red noise has zero mean and
constant variance, presenting a
low-power spectrum weighted
toward low frequencies, without
dominant periodicity.
The red noise can be generated
by a temporal integration of white
noise:

red(t ) = ρlag red(t −1)+w’, (5.14)

where w’ is the white noise and
given by R

√
1−ρlag, in which

R is a sample from the standard
normal distribution.

Table 5.2 Red noise.

From equation 5.13, we can derive the power spectral density of a red noise
function. It is important to note that the power spectral density of the red noise
must be normalized with the spectral energy of the signal:

φ
f
red =φred

φ f f

φred

, (5.15)

in which φ f
red is the normalized power spectral density of the red noise.

Finally, we can calculate the confidence level with respect to the amount of
red noise in the signal based on the chi-square test.

First, we calculate the finite Fourier transform of the lag correlation function:

Rspectra =
1−ρ2

lag

1−2ρlag cos
(
2πω/ fnyquist

)+ρ2
lag

, (5.16)

in which ρlag is the one-lag autocorrelation, ω is the frequency that varies from 0
to 0.5 fnyquist, where fnyquist is the Nyquist frequency. Rspectra must be normalized
by taking into account the total power spectral energy of the signal, similar to
equation 5.15.

The normalized Rspectra represents the power spectral density of theoretical
red noise (Figure 5.19). To estimate the confidence levels, we perform the Chi-
square test, where we define the probability of error and the degrees of freedom
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(Thomson, Emery, 2014):

dof = 2 kover

(
2.5164 Nzero

Nwindow

)
, (5.17)

in which Nwindow is the window size, Nzero is the window size considering zero-
padding, and kover is a correction factor to compensate for the overlapping and
windowing processes (Thomson, Emery, 2014). kover = 1.2 is recommended for
the 50% overlapping Hamming window(Bernhardt, Kirillin, 2013). Note that kover

is different from ka
window, the correction factor used to account for the influence

of the window function on WFT (Equation 5.7).
Applying the Power Spectral Density (PSD) to a signal composed of three

fundamental harmonic components (2 h, 5 h, and 10h), we can readily identify
the first two peaks (5 h and 10 h). However, the 2 h component is barely detectable
as a significant peak. It can only be considered valid on the basis of the analysis
of the mean red noise spectrum using the chi-square test (see Figure 5.19).

Figure 5.19 The power spectral density (PSD) plot shows the synthetic sig-
nal with three harmonic components. The solid red line represents the
theoretical Fourier transform of the lag-correlation function. Additionally,
the red dashed lines depict the mean red noise spectrum for the time series
at a confidence level of 95%.

5.5.4 Wavelet Analysis

To overcome Heisenberg’s uncertainty principle, an alternative approach to con-
ducting spectral analysis is wavelet analysis. Unlike traditional methods, the
wavelet transform utilizes multi-resolution techniques, allowing the simultane-
ous decomposition of a signal into both time and frequency domains. This feature
proves especially valuable when analyzing long periods of data. In essence, the
wavelet transform employs a variable aspect ratio, as demonstrated in Figure
5.20, providing a higher time resolution at higher frequencies. As a result, this
technique becomes more powerful for time series that consist of both lower- and
higher-frequency harmonic components.

Numerous studies have employed wavelet analysis to detect internal wave
activity. For example, Stevens (1999) correlated the spectral power of the wavelet
within the high-frequency internal wave range with the maximum shear between
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layers over time, indicating that propagating internal waves might be excited by
shear stress between layers. Additionally, Bernhardt, Kirillin (2013) used wavelet
analysis to identify the seasonal variability of rotation-affected internal seiches in
Lake Arendsee (Germany).

Although wavelet analysis overcomes Heisenberg’s uncertainty principle in
studying internal waves, most studies in the scientific community still rely on the
Fourier transform to analyze harmonic components in temperature time series
(Boegman et al., 2003; ?; Antenucci, Imberger, 2001; Dissanayake et al., 2019).
This preference for Fourier analysis can be attributed to its well-established status
and widespread use. However, it is important to note that the Short-Time Fourier
Transform (STFT) has also proven useful for detecting internal waves in various
situations.

Figure 5.20 Wavelet transforma-
tion with variable aspect ratio.

Wavelet Transform

The wavelet transform, denoted as Wx , involves the inner convolution between a
wavelet function ψw and a signal f , where f ∈ L2(R). Unlike the Fourier trans-
form, the wavelet function is not fixed; instead, it adapts its size or scale depend-
ing on the analyzed harmonic component:

W f (υ, s) ≡ 〈 f ,ψw(υ,s)〉 =
∫ +∞

−∞
f (t )p

s
ψ∗

w

(
t −υ

s

)
dt . (5.18)

The wavelet function is derived from the mother wavelet through translation
and scaling (window size). The parameter υ controls the position of the wavelet
function as it shifts through the signal, akin to the window shift in STFT. On the
other hand, the parameter s governs the wavelet scaling and determines the
resolution of time and frequency. When s is large, the signal is dilated, providing
more information on low frequencies. In contrast, small s values compress the
signal, offering more insight into the high frequencies.

The scaling parameter s plays a crucial role in overcoming Heisenberg’s un-
certainty principle, making wavelet analysis more powerful than Fourier analysis.
By appropriately adjusting s, wavelet analysis achieves a better balance between
time and frequency resolution, allowing the study of signals with varying charac-
teristics and frequency content.

In theory, equation 5.18 quantifies the fluctuation of the signal in the vicinity
of υ, and the extent of this neighborhood is proportional to the scaling parameter
(s). The asterisk in the equation represents the complex conjugation of the base
wavelet function (ψw (n)). This wavelet analysis allows us to examine the signal at
different scales and positions, providing valuable insights into its time and fre-
quency characteristics with improved resolution compared to traditional Fourier
analysis.

In wavelet analysis, the size of the wavelet function does not need to be ex-
plicitly chosen, as it adapts to the scale of the analyzed signal. However, there
are numerous types of wavelet function available, and the appropriate selection
depends on the characteristics of the signal under study. Several factors must
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be considered during the wavelet function selection process, including the or-
thogonality of the wavelet function, its width, the shape of the time series being
analyzed, and whether the wavelet function codomain is real or complex (Farge,
1992).

Wavelet functions can be broadly categorized into orthogonal and non-orthogonal
wavelets. The orthogonal wavelet transform has a convolution number at each
scale that is proportional to the wavelet width. This property facilitates efficient
and invertible wavelet transforms, making it suitable for various applications in
signal and image processing, compression, and denoising. On the other hand,
non-orthogonal wavelets offer more flexibility but may not guarantee perfect
reconstruction. The choice between orthogonal and non-orthogonal wavelets
depends on the specific requirements and trade-offs in each analysis scenario.
Careful consideration of these factors helps to ensure that the wavelet analysis
yields meaningful and accurate results for the given data.

Wavelet functions are selected on the basis of their codomain, whether they
are real or complex wavelet functions. A complex wavelet is more adept at captur-
ing the oscillatory behavior of a signal, making it suitable for analyzing signals
with multiple components or varying frequencies. It effectively represents both
magnitude and phase information, making it useful for denoising and feature
extraction tasks.

The choice of the wavelet function is also influenced by the e-folding time,
a parameter exclusively used for continuous transforms. The resolution of the
wavelet transform directly depends on the e-folding time, which strikes a balance
between the width space and the Fourier space. Measures the width of the wavelet
relative to the scaling parameter (s). A larger e-folding time results in a broader
spread of the wavelet power, leading to poorer time resolution but improved
frequency resolution.

Another critical parameter considered in determining the wavelet function is
the shape of the signal. The selected wavelet function should match the type of
features present in the signal. For example, studies have suggested the use of a
rectangular function like the Harr function for sharp signals with jumps and steps
(Torrence, Compo, 1998). Conversely, for smooth signals, a smoother function,
like a damped cosine, is more suitable.

By appropriately adjusting these parameters and selecting an appropriate
wavelet function, researchers can effectively tailor the wavelet analysis to the
specific characteristics of the signal, obtaining valuable insights and accurate
results. Figure 5.21 shows a comparison between the wavelet analysis and the
periodogram obtained from the STFT.
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Figure 5.21 Spectral analysis of a noised non-stationary signal (same pre-
sented in Figure 5.15).

Another application of wavelet analysis is related to the global wavelet spec-
trum. The global wavelet spectrum is an averaged power spectrum based upon
a set of wavelet functions, which is similar to the averaged spectrum obtained
from the STFT. The global wavelet spectrum is a smoothed version of the global
STFT and is an efficient estimator of the true power of a signal (Fernando, 2012).
The global wavelet spectrum can be obtained by averaging all the local wavelet
spectra, equation 5.18:

W̄ f
2

(υ, s) = 1

N

N−1∑
f =0

|W f (υ, s)|2. (5.19)

Despite this method being extremely useful to estimate the true power of a
time series, it can generate the bias problem. This issue is related to the difference
between the global wavelet spectrum and the true Fourier spectrum in terms
of energy. At high frequencies, the global wavelet is very broad in frequency,
and consequently all peaks in the spectrum are smoothed. On the other hand,
at low frequencies, the wavelet is narrow; therefore, the peaks are sharp, and
they present higher energy. Studies have revealed that in some occasions the
low-frequency energy is amplified and, consequently, the global wavelet does not
work efficiently (Wu, Liu, 2005).

5.6 Applications in physical limnology perspective

Time series of underwater temperatures are widely utilized as a prominent vari-
able for identifying baroclinic motions in thermally stratified water bodies. Many
times, temperature fluctuations are not directly applied to the power spectral
density, since this analysis would only give an idea of how the temperature varies
in a specific water depth. Instead, time series of isotherms are commonly used
to highlight the temperature fluctuation of a specific interface, providing the
amplitude of those physical waves. For example, in Mono Lake, a 14 ◦C isotherm
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was used to identify the occurrence of a 22 h basin-scale internal wave through
spectral analysis (Vidal et al., 2013). The time-series of isotherms were obtained
by using a thermistor chain. To gain a better understanding of the internal seiche
characteristics, the study evaluated time-series of isotherms at different stations
along the lake. The application of linear interpolation to obtain isotherms does
not disrupt the integrity of the spectral analysis (Lemmin, 1987).

Studies conducted in Lake Villarrica (Chile), using two-thermistor chains,
identified three different modes of internal oscillations through spectral analysis
of isotherm series (Rozas et al., 2013). These modes include the fundamental
Kelvin internal wave with a period of 24 h, the 12 h Kelvin internal wave with
the second vertical mode, and a Poincare wave with a period of 8 h. Note that
to reveal the occurrence of internal waves with higher vertical modes, a phase
analysis (Section 5.5.2) should be performed on different isotherms to reveal the
intrinsic nature of this type of internal seiche, which is characterized by water
masses flowing in opposite directions. A further discussion of this topic can be
found in Chapter 7.1.

In the context of identifying internal waves with different vertical modes, the
first mode is typically determined by using the isotherm situated in the pycno-
cline region (thermocline when stratification is mainly induced by temperature
variations). On the other hand, higher vertical modes generally require considera-
tion of multiple isotherms at various depths (Lemmin et al., 2005). However, it
is essential to recognize that higher vertical modes might exhibit a relatively low
level of energy. Consequently, they can sometimes evade easy detection through
spectral analysis because of their weak signal strength.

When using spectral analysis to identify internal seiches and higher horizontal
modes in a reservoir, the response of the analysis can be influenced by the location
of the temperature sensor within the reservoir. Temperature measurements
conducted in Baldeggersee showed a minimal vertical temperature displacement
near the center of the stratified basin, suggesting the presence of a fundamental
internal seiche with the nodal point located near the center of the basin (Lemmin,
1987). Stations located in the middle of the reservoir, which could potentially
serve as nodal points for internal seiches, may demonstrate a limited response to
the effects of internal seiches. However, they show a strong response to higher
horizontal modes.

During the past several decades, extensive research has focused on study-
ing the dynamics of lakes and reservoirs by monitoring the water temperature
(Mortimer, 1952). Today, as a result of significant technological advances, water
velocity measurements have also become valuable tools for understanding the
dynamics of stratified lakes. Studies conducted in Lake Alpnach have revealed, us-
ing spectral analysis of the bottom current and isotherms, that the current of the
bottom boundary layer is strongly induced by oscillatory motion induced by in-
ternal seiche activity (Gloor et al., 1994). These measurements provide additional
information and complement the information derived from the temperature data.
As a result, researchers now have a more complete understanding of the intricate



94 Chapter 5 Signal and Data processing

processes that govern the behavior of stratified water bodies.
It is important to note that the measurements utilized for identifying internal

waves (e.g. temperature, underwater velocity field) are not solely influenced by in-
ternal wave motions. Other factors such as variations in solar radiation and wind
intensity oscillations can also impact, for example, temperature measurements.
Therefore, it becomes essential to carefully investigate the spectrum, specifically
isolating and distinguishing oscillations caused by internal waves from those that
are unrelated to baroclinic motion. This distinction is crucial for accurately inter-
preting the spectral analysis results and gaining a comprehensive understanding
of the dynamics present in the reservoir.
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Chapter 6

Interfacial Wave

Waves can be generated between two or more layers of fluids of different densities
and are not limited only to the water-air interface. The sea waves excited by the
wind and the circular surface waves generated by a stone thrown onto a smooth
surface of water (Figure 6.2) are examples of free surface waves. By definition,
a surface wave propagates in a "one-layer system", presenting a high density
difference between interfacial fluids. For example, considering sea waves, the
water is approximately 1000% heavier than the air. Waves formed between oil
and air are also considered free surface waves, since oil is still much heavier
than air, approximately 900% heavier. However, waves can be generated by any
perturbation in a system composed of fluid layers with a density difference.

Figure 6.1 Oil-water interface.

Figure 6.2 Circular dispersive waves fronts radiating from a localized source.

A "two-layer system" is formed by two fluids that present a small fraction of
the density of either layer. For example, oil and water (Figure 6.1), where water is
only 11% heavier than oil. Although apparently there is no difference between
free surface waves and interfacial waves, the mathematical description can be
strongly simplified when we have two fluids with a strong density difference.

97
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Considering free surface waves, we can neglect the contribution of the air layer,
since the water density is much higher than the air density. This simplification
leads to a final solution that does not consider the properties of the air, leading to
a particular solution of the interfacial wave equation.

6.1 Free surface wave

Free surface waves have been described in great detail in many textbooks (see,
for instance, ?). Here, we present just relevant features of free surface waves to
help in understanding internal waves and its analogy with free surface waves.

This section is divided into three main topics. Firstly, we present a mathemat-
ical description to find the dispersion relation for free surface waves, the solution
of wave equations. Most of this solution is applied to find the dispersion relation
of internal waves; however, in the internal wave case the upper layer fluid is not
neglected.

Even after this generalization, the dispersion relation can be divided into two
cases depending on another simplification, which classifies the wave in more than
two different categories: deep and shallow waves. We explore this classification
since it is useful to treat these simplifications for internal waves, which tend to
have a more complex solution.

Finally, we discuss the energy transport of free surface waves and the defini-
tion of group waves, phase, and group velocities. This last topic may be important
for drawing a comparison between the energy of internal waves and surface waves
and for making an analogy between the physical description in a surface and for
a continuous stratified fluid, where internal waves, without interfacial ones, are
susceptible to be excited.

6.1.1 Small-amplitude solution

As we have previously shown in equation 2.56, vorticity is created essentially by
baroclinic torque and viscous shear. When an inviscid flow is considered, the
baroclinic term is the only source of vorticity.Figure 6.3 Baroclinic torque.

From Equation 2.56, the baroclinic term can be expressed using vector nota-
tion as

1

%2 εpmk
∂%

∂xp

∂P

∂xm
= 1

%2
~∇%×~∇P, (6.1)

in which~∇%×~∇P is non-zero for any non-parallel planes. For example, in baro-
clinic activity, the isopycnals and isobars are inclined toward each other (Figure
6.3). In this case, the lighter fluid is accelerated faster than the heavier one,
resulting in a shear layer that causes vorticity generation.

On the other hand, considering that the isopycnal and isobars are parallel to
each other, the flow is considered barotropic and vorticity is not generated. This
is the case for an unstratified system where free surface waves are the only wave
that can be generated. This also leads to an important conclusion: surface waves
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are irrotational, whilst the internal wave is not. In addition, as we will explore
in the next section, ignoring turbulent motions, interfacial waves can also be
considered irrotational.

Let us now focus on a free surface wave as shown in Figure 6.4. The superficial
variation of the water due to wave evolution is represented by η(x, y, t), a is the
wave amplitude, and the mean depth of the water is expressed by z =−H(x, y),
in which z can vary spatially along the coordinates x and y . Note that z can also
vary in time when topography variation is not neglected.

Since these waves are irrotational and inviscid, they can be described by
potential theory. Therefore, as discussed in Section 2.2, the velocity field can be
reduced to one scalar function, given by Equation 2.42. Thus, the simplified mass
conservation equation (equation 2.34) reduces to Laplace equation: Figure 6.4 Surface wave.

∂

∂xi

(
∂φ

∂xi

)
= ∂2φ

∂x2
i

= 0, (6.2)

in which φ is the potential velocity function.
In Cartesian space, the Laplace equation for a three-dimensional wave (Figure

6.4) may be expressed in a complete form as

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0. (6.3)

The Laplace equation is an elliptic-type partial differential equation. Although
this equation is linear, it can be used to describe large-amplitude waves. Consid-
ering the presence of large-amplitude waves, it introduces nonlinear terms on
surface boundary condition. This equation requires boundary conditions in the
six surrounding boundaries, two in x −direction, two in y −direction, and two in
z −direction.

In z−direction we have two boundary conditions, one at the water surface and
another at the bottom of the system. Taking into account an impermeable bottom
(rigid), the vector velocity is aligned parallel to the bottom topography and, con-
sequently, the normal fluid velocity must be zero at z =−H (x, y). Mathematically,
n · ∇φ= 0. Note that in this case, the vertical and horizontal components of the
velocity field are not necessarily zero.

Figure 6.5 Particle motion on the
system bottom.

First, consider the flow velocity vector in the bottom topography for a period
of time, as illustrated in Figure 6.5. Fluid particles move with velocity ui from
point 1 to point 2. Thus, we have the following.{

x2 −x1, y2 − y1,−H(x2, y2)+H(x1, y1)
}=∆t {u, v, w} , (6.4)

in which the vertical function H(x, y) can be expanded in a Taylor series for two
variables as

H(x2, y2) ≈ H(x1, y1)+ (x2 −x1)
∂H1

∂x
+ (y2 − y1)

∂H1

∂y
. (6.5)
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Substitution of equation 6.5 into z −direction of equation 6.4 and dividing
the whole term by ∆t , give us

∆x

∆t

∂H

∂x
+ ∆y

∆t

∂H

∂y
= w,

in which ∆x/∆t = u and ∆y/∆t = v . Note that if we set the bottom conditions
as a plane surface, H is constant along the system, not varying along x and
y −direction, and consequently the bottom conditions become w = 0. Using the
definition of potential theory, we find that

∂φ

∂z

∣∣∣∣
z=−H

= 0. (6.6)

Equation 6.6 is known as the kinematic boundary condition for a rigid and
plane bottom.

Figure 6.6 Particle motion on the
bottom of the system.

When considering the free surface, once a particle is on the water-free surface,
it stays there always. Thus, the dot product between the velocity vector field
and the outward-pointing normal vector is not necessarily zero, as previously
observed with the bottom condition. In this case, the fluid particles move with
the water surface.

Eulerian form
Another way to obtain the kine-
matic boundary condition is to
analyze the material derivative of
the resulting plane displacement.

D Z

Dt
= ∂Z

∂t
+ui

∂Z

∂xi
, (6.7)

in which

Z =
{

z +H(x, y) for z =−H

η(x, t )− z for z = η

Applying the condition z to the
derivative form of the material
(Equation 6.7), we obtain the bot-
tom and surface conditions ex-
actly equal to the expressions 6.6
and 6.10, respectively.

Table 6.1 Kinematic boundary
conditions .

In analogy to bed conditions, Figure 6.6 shows the surface displacement
during the time interval ∆t , in which the particle velocity vector is defined as{

x2 −x1,0,η(x2, t2)−η(x1, t1)
}=∆t {u, v, w} (6.8)

in which, since we consider the surface to be just displaced by wave motion, η is
the wave function. As the phase speed is aligned with x-direction, the velocity of
the particles in y-direction may be neglected.

Expanding η(x2, t2) into a Taylor series, we obtain the following.

η(x2, t2) ≈ η(x1, t2)+ (x2 −x1)
∂η(x1, t2)

∂x
. (6.9)

Introducing Equation 6.9 into the vertical component of Equation 6.8 and
dividing each term by ∆t , we obtain the following:

η(x1, t2)−η(x1, t1)

∆t
+ ∆x

∆t

∂η

∂x
= w,

in which ∆x/∆t = u and t2 → t1. Thus, we have the following.

∂η

∂t
+u

∂η

∂x
= ∂φ

∂z
on z = η(x, t ). (6.10)

Equation 6.10 is the kinematic boundary condition on the surface of free
water. However, we can simplify the conditions one step further. Note that the
point of application is η(x, t ) which varies along x and t . We can extend equation
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6.10 in a Taylor’s series at z = 0 (Figure 6.7). Thus, considering just the first two
terms of Taylor’s expansion (first-order approximation), we have the following.

∂η

∂t
+η ∂

∂z

∂η

∂t
+u

∂η

∂x
+η ∂

∂z

(
u
∂η

∂x

)
≈ ∂φ

∂z
+η∂

2φ

∂z2 on z = 0. (6.11)

To simplify equation 6.11 we can write it in a non-dimensional form using
transformation variables.

η= aη∗ t = T t∗, (6.12a)

u = a/T u∗ v = a/T v∗ w = a/T w∗, (6.12b)

x =λx∗ y =λy∗ z =λ z∗, (6.12c)

in which T is the wave period, a is the wave amplitude, and λ is the wavelength.
Variables donated by * are dimensionless. Substitution of equations 6.12 into
the expanded kinematic boundary condition at the water surface (equation 6.11)
gives us

Figure 6.7 Taylor expansion.

T For shallow waters, the total
depth of the water H can
be used to parameterize
the dimensional variables
instead of λ.

a

T

∂η∗

∂t∗
+ a2

λT
η∗

∂

∂z∗
∂η∗

∂t∗
+ a2

λT
u∗ ∂η∗

∂x∗+
a3

λ2T
η∗

∂

∂z∗

(
u∗ ∂η∗

∂x∗

)
≈ a

T

∂φ∗

∂z∗ + a2

λT
η∗
∂2φ∗
∂z∗2 . (6.13)

Dividing equation 6.13 by a/T , we obtain the following.

∂η∗

∂t∗
+ a

λ
η∗

∂

∂z∗
∂η∗

∂t∗
+ a

λ
u∗ ∂η∗

∂x∗+(
a

λ

)2

η∗
∂

∂z∗

(
u∗ ∂η∗

∂x∗

)
≈ ∂φ∗

∂z∗ + a

λ
η∗
∂2φ∗
∂z∗2 , (6.14)

Small-amplitude wave and lin-
earization
Another way to simplify the kine-
matic boundary condition for the
small-amplitude wave is the direct
linearization of equation 6.11. We
showed through dimension analy-
sis that there are terms in equation
6.11 that have order O (a/λ), which
may be neglected when a ¿λ.
However, inspecting equation
6.14, we can see that all terms of
order O (a/λ) are nonlinear. So,
by neglecting non-linear terms,
we actually adopt the condition
a ¿ λ. Therefore, the lineariza-
tion of equation 6.14 implies that
we restrict our solution to small-
amplitude waves.

Table 6.2 Linearization of the kine-
matic boundary condition at water
surface.

where for small-amplitude waves (a <<λ), the terms of order O (a/λ) in equation
6.14 can be neglected. Thus, considering the dimensional form, equation 6.14
becomes

∂η

∂t
= ∂φ

∂z

∣∣∣∣
z=0

, (6.15)

which means that the vertical velocity of fluid particles on the water surface moves
vertically with the water surface and cannot be measured horizontally by u and v .
Note that for large-amplitude waves, the nonlinear convective terms also move
the particle laterally (Figure 6.6).

The last boundary condition comes from the equations of motion and is called
the dynamic boundary condition, which is applied exactly to the water surface
on the streamline (z = η). Dividing all terms of 2.50 by %, the Euler equation can
be written.

∂ui

∂t
+u j

∂ui

∂x j
=−1

%

∂P

∂xi
+ gi . (6.16)
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The second term of Equation 6.16 can be explored to obtain the Bernoulli
unsteady equation under some simplifications. The second term can be written
as

u j
∂ui

∂x j
= u j

∂ui

∂x j
+u j

∂u j

∂xi
−u j

∂u j

∂xi
= u j

(
∂ui

∂x j
− ∂u j

∂xi

)
+u j

∂u j

∂xi
. (6.17)

Note that, for an irrotational flow, we have the following.

∂ui

∂x j
− ∂u j

∂xi
= 0,

and, consequently, Equation 6.17 reduces to

u j
∂ui

∂x j
= u j

∂u j

∂xi
= 1

2

∂u j u j

∂xi
,

and equation 6.16 can be written as

∂ui

∂t
+
∂u2

j /2

∂xi
+u j

(
∂ui

∂x j
− ∂u j

∂xi

)
=−1

%

∂P

∂xi
+ gi .

Although we have already applied a simplification based on irrotational flow,
the potential theory (restricted to irrotational flows) can be applied to the tran-
sient term. Considering that % does not change along a streamline, we have the
following.

∂

∂t

(
∂φ

∂xi

)
+ ∂(u j )2/2

∂xi
+ ∂P/%

∂xi
− gi = 0 on z = η, (6.18)

in which gi =
{
0,0,−g

}
. Therefore, Equation 6.18 can be written in a convenient

form as
∂

∂t

(
∂φ

∂xi

)
+ ∂(u j )2/2

∂xi
+ ∂P/%

∂xi
+ ∂g z

∂z
= 0 on z = η. (6.19)

Taking into account only the vertical component (z direction) of the system
of equations 6.19 and that φ is a smooth function, equation 6.19 becomes

∂

∂z

(
∂φ

∂t
+ (u j )2

2
+ P

%
+ g z

)
= 0 on z = η. (6.20)

We can now integrate the equation 6.20 with respect to z to obtain the follow-
ing result.

∂φ

∂t
+ (u j )2

2
+ P

%
+ g z = F (t ) on z = η, (6.21)

in which F (t ) is the integration constant with respect to z, an arbitrary function
of time alone. Since F (t ) is arbitrary, we can choose a suitable constant that fits
our needs. In a convenient form, assuming that F (t) = P (η), the equation 6.21
reduces to unsteady Bernoulli equation, given by

∂φ

∂t
+

u2
j

2
+ g z = 0 on z = η(x, t ). (6.22)
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Now we can expand the equation6.22 in a Taylor’s series at z = 0

∂φ

∂t
+η ∂

∂z

∂φ

∂t
+

u2
j

2
+η ∂

∂z

(u2
j

2

)
+ g z +η∂g z

∂z
= 0 on z = 0,

∂φ

∂t
+η ∂

∂z

∂φ

∂t
+

u2
j

2
+η ∂

∂z

(u2
j

2

)
+ηg = 0. (6.23)

Equation 6.23 can be written in a non-dimensional form using the same
transformation variables used before (equations 6.12). Thus, we have

aλ

T

∂φ∗

∂t∗
+ a2

T 2η
∗ ∂

∂z∗
∂φ∗

∂t∗
+ a2

T 2

u∗
j

2

2
+ a3

λT 2η
∗ ∂

∂z∗

(u∗
j

2

2

)
+aη∗g = 0,

∂φ∗

∂t∗
+ a

λ
η∗

∂

∂z∗
∂φ∗

∂t∗
+ a

λ

u∗
j

2

2
+ a2

λ2η
∗,

∂

∂z∗

(u∗
j

2

2

)
+ T 2

λg
η∗g∗ = 0. (6.24)

in which the last term cannot be adimensionalized with respect to fundamen-
tal quantities of our problem. Thus, we cannot compare the order of this term
with others (O (T 2/(gλ))), and consequently we cannot neglect this term by di-
mensional analysis. However, for small-amplitude waves, the terms of order
O (a/λ) can be neglected, since a ¿λ. Thus, the equation 6.24 can be written in
dimensional form as

∂φ

∂t
=−ηg . (6.25)

Equation 6.25 is known as the dynamic boundary condition at the water
surface. This equation specifies that the boundary condition at the water surface
cannot have an arbitrary periodicity in space and time.

U For a hydrostatic solution,
we can find the dispersion
relation through the wave
equation, which is obtained
from a system of equations
formed by conservation of
the mass and momentum
equations. For more details,
see Table 6.3.

Now, before proceeding, let us analyze the motion function of the interface,
η. Since we are interested only in a simple harmonic motion, it is convenient to
specify the wave as a sinusoidal wave,

η(xi , t ) = a cos(ki xi −ωt ), (6.26)

where a is the wave amplitude and ki and ω are the wave number and frequency,
respectively. Since the crests and troughs are parallel to each other, this type of
wave is called plane wave.

Equation 6.26 is one way to represent a plane wave which can also be pre-
scribed, for example, by

η(xi , t ) = a sin(ki xi −ωt ), (6.27a)

η(xi , t ) = A ei(ki xi−ωt ), (6.27b)

in which A is a complex number that expresses the amplitude and phase of the
wave.

The sinusoidal representation of the interface displacement is not just con-
venient because these functions assume a basic wave form, but they can be
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expanded in a linear series. Since the Laplace equation (Equation 6.2) is a linear
function, all the terms of an expanded representation of η can be a solution of the
problem.

The dispersion relation is obtained by solving the Laplace equation. Note that
the momentum equation in this situation is used just as in the dynamic boundary
conditions.

Since we assume the generation of only small-amplitude waves, linearizing
the boundary conditions, we can assume that the system response must have the
same periodicity. In this case, the solution of the Laplace equation (equation 6.2)
has the following form:

φ(x, z, t ) = f (z)sin(kx −ωt ). (6.28)

Subtracting equation 6.28 from the Laplace equation (equation 6.2), we ob-
tain a second-order linear homogeneous differential equation with constant
coefficients,

−k2 f (z)sin(kx −ωt )+ ∂2 f (z)

∂z2 sin(kx −ωt ) = 0,

∂2 f (z)

∂z2 −k2 f (z) = 0, (6.29)

in which we have two linearly independent solutions.

Hydrostatic solution
The hydrostatic solution provides
results for shallow water waves,
which considers that the horizon-
tal scales (wavelength) are larger
than the vertical scales (water
depth). The non-hydrostatic solu-
tion (6.36), is a generalization of
this solution.
By combining the momentum
equations in x− and z −direction,
and the mass conservation equa-
tion, we can obtain the wave equa-
tion:

∂2η

∂t 2
− c2

p
∂2η

∂x2
= 0, (6.30)

in which cp = √
g H is the phase

velocity. The solution of shallow
water can be obtained assuming
η = A expi (kx−ωt ), and is exactly
the same as from 6.40.

Table 6.3 Shallow water free-
surface wave.

The general solution is given by

f (z) =C1 ek1z +C2 ek2z , (6.31)

where k1 and k2 are roots of f 2 −k2 = 0. Thus, Equation 6.31 reduces to

f (z) =C1 ekz +C2 e−kz , (6.32)

in which C1 and C2 are coefficients of the equation 6.32 that can be found by
boundary conditions.

From the kinetic boundary condition at the bottom of the basin (z = −H)
defined by equation 6.6 and the general solution of φ(x, z, t ) and f (z), defined by
equations 6.28 and 6.32, respectively, we have

∂φ

∂z

∣∣∣∣
z=−H

=
(
kC1 e−kH −kC2 ekH

)
sin(kx −ωt ) = 0,

in which we can easily find that

C1 =C2 e2kH .

The general solution now can be written as

φ(x, z, t ) =C2

(
e2kH ekz +e−kz

)
sin(kx −ωt ). (6.33)
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Applying the dynamic boundary condition on the water surface for a small-
amplitude wave (Equation 6.25) to equation 6.28, we obtain the expression of
C2:

∂

∂t

(
C2

(
e2kH ekz +e−kz

)
sin(kx −ωt )

)∣∣∣∣
z=0

=−ag cos(ki xi −ωt )

C2 = ag

ω

1

e2kH +1
= ag

ω

(
e−kH

ekH +e−kH

)
,

in which ekH +e−kH = 2cosh(kH). Thus, we have

C2 = ag

2ω

e−kH

cosh(kH)
. (6.34)

Finally, substituting equation 6.34 into the general solution (6.33) gives us the
following.

φ(x, z, t ) = ag

2ω

e−kH

cosh(kH)

(
e2kH ekz +e−kz

)
sin(kx −ωt ),

= ag

2ωcosh(kH)

(
ek(z+H) +e−k(z+H)

)
sin(kx −ωt ),

φ(x, z, t ) = ag

ω

cosh(k(z +H))

cosh(kH)
sin(kx −ωt ). (6.35)

The dispersion relation is obtained by the last boundary condition, the kine-
matic boundary condition on the surface of the water (equation 6.15).

∂η

∂t
− ∂φ

∂z

∣∣∣∣
z=0

= 0,

ω− kg

ω

sinh(kH)

cosh(kH)
= 0,

ω2 = kg tanh(kH), (6.36)

in which this expression is called dispersion relation since it describes the re-
lationship between wave frequencies (ω) and wave numbers (k). Actually, the
expression shows that, for some conditions, waves of different wavelengths prop-
agate at different phase speeds (Figure 6.8).
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Figure 6.8 Comparison of the dispersion curves for three different depths
(H = 0.01,0.1,and 10 m).

Note that when the wavelength is much higher than the depth of the water,
the phase velocity is constant, and consequently the wave is non-dispersive. The
dark red curve may contain non-dispersive waves only for low wavelength, when
k À 600. The red curve shows that for k > 6, the larger the wavelength, the faster
the phase velocity of the free surface wave. Figures 6.2 show dispersive circular
surface waves generated by a stone thrown into deep water.

From Equation 6.35 we can also compute the velocity fields. Taking the
derivatives of the potential velocity, the horizontal and vertical velocities are,
respectively,

u(x, z, t ) = akg

ω

cosh(k(z +H))

cosh(kH)
cos(kx −ωt ), (6.37a)

v(x, z, t ) = akg

ω

sinh(k(z +H))

cosh(kH)
sin(kx −ωt ), (6.37b)

in which the wave crest moves at phase speed,

cp = ω

k
=

√
g

k
tanh(kH). (6.38)

Figure 6.10 shows the solution to the problem of waves on the free surface. As
we can analyze, the maximum horizontal velocity occurs in the wave crest and
in the opposite direction at the wave trough. Maximum vertical velocities occur
between the wave crest and the trough. Furthermore, we can also observe that the
velocities are stronger at the surface of the water than at deeper regions. Note that
although Figure 6.10 uses the general solution of surface wave propagation, since
η is a monochromatic wave (has a single wavelength and frequency), the wave
evolution does not show wave dispersion, which characterizes the propagation of
waves in deep waters.

Figure 6.9 Tangent hyperbolic
function (H = 0.1 m).
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Figure 6.10 Free-surface wave solution for an internal wave of 2 m ampli-
tude (with wavelength 50 m and wave period of 10 sec) propagating in an
unstratified basin of depth 20 m: (a) shows the horizontal velocity compo-
nent and (b) the vertical velocity component. The blue curve represents the
interfacial displacement given by 6.26.

6.1.2 Special cases

As we noted in Figure 6.8, if the depth of the water H is more grating than the
wavelength λ, the wave is called dispersive. Essentially, this occurs since the
phase velocity of the wave can vary as a function of λ. Based on this classification,
we now investigate the behavior of wave propagation for special cases: shallow
and deep waters.

In the limit of deep water, which can be expressed mathematically as kH À 1,
kH →∞, and tanh(kH) → 1 (Figure 6.9), we find that

ω2 = g k, (6.39)

and cp = √
g /k. Note that in this case cp is a function of the wavenumber k,

which characterizes the propagation of a dispersive wave.
On the other hand, in the limit of shallow water waves (kH → 0), tanh(kH)

can be approximated to kH through Taylor expansion, resulting in

ω2 = g Hk2. (6.40)

The phase velocity in the deep water limit is given by cp =√
g H , which means

that the phase velocity does not depend on the wavelength.

Figure 6.11 Velocity field for a sur-
face wave (H = 100 m).6.1.3 Energy transport and Group velocity

As a surface wave travels horizontally at the water surface, the water particles
move in a circular motion, returning to its original position. This behavior can
be observed in Figure 6.11, which is a vectorization of the velocities presented
in Figure 6.10. Clearly, the vector velocities do not form a circular motion, since



108 Chapter 6 Interfacial Wave

wave propagation is not a steady flow, and Figure 6.11 shows only a moment of
wave propagation. Following the evolution of the wave, we may observe that
the pathline is circular and that as deeper the location, the smaller the circular
motion.

T The particle returns to its
original position accord-
ing to linear theory. Due
to nonlinearity, a small net
forward movement is ob-
served.

When water particles move up/down toward the surface wave crest/trough,
the kinetic energy is converted to the potential energy, and consequently the wa-
ter level is displaced from the equilibrium position. However, the tilted interface
flows back toward equilibrium, transforming the potential energy into kinetic
energy during wave propagation. Thus, the surface wave travels, exchanging ki-
netic energy with potential energy and vice versa. In this case, since we neglected
the contribution of viscosity and mixing, we assume that the wave propagates
infinitely and that the total energy is not dissipated by viscosity or turbulence.

Since the motion is dominated by kinetic and potential energy, we consider
that the total wave energy is given by the sum of its contributions.

Et = EK +EP , (6.41)

in which EK is the kinetic energy and EP is the potential energy.
The kinetic energy of the wave per unit of surface area during a wave period

is given by

EK = 1

T

∫ T

0

∫ η

−H

ρ

2
(u2 +w2)dz dt , (6.42)

in which T is the wave period.
Note that we can modify the integration limit from η to 0, just assuming that

the kinetic energy neglected at the crest is equal to the overestimation at the
trough. Thus, we have

EK ≈ ρ

2T

∫ T

0

∫ 0

−H

a2g 2

c2 cosh2(kH)

(
cosh2(k(z +H))cos2(kx −ωt )+

sinh2(k(z +H))sin2(kx −ωt )
)

dz dt . (6.43)

Time average
Even through the time average of a
powered trigonometric functions
that can be found through the
integration of the Pythagorean
identity, we may find the solution
through a simpler form. If T is
large enough, the time average
of sin2(t ) is the same as the time
average of cos2(t ), so we know
that:

sin2(t )+cos2(t ) = 1,

in which the time average is de-
fined as

sin2(t ) = 1/2. (6.44)

Table 6.4 Time average of powered
trigonometric function.

Taking the time average defined by Equation 6.44, we obtain the following.

EK ≈ ρ

4

∫ 0

−H

a2g 2

c2 cosh2(kH)

(
cosh2(k(z +H))+ sinh2(k(z +H))

)
︸ ︷︷ ︸

(I)

dz. (6.45)

Term (I) can be written in an exponential form as

(I) =
(

ek(z+H) +ek(z+H)

2

)2

+
(

ek(z+H) −ek(z+H)

2

)2

,

= 2
e2k(z+H) +e2k(z+H)

4
,

= cosh(2k(z +H)),
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which results

EK = a2ρg 2

4cosh2(kH)c2

∫ 0

−H
cosh(2k(z +H)) dz,

= a2g 2

4c2

ρ

cosh2(kH)

(
sinh(2k(z +H))

2k

)∣∣∣∣0

−H
,

= ρ

8

a2g 2k

ω2

sinh(2kH)

cosh2(kH)
,

Applying the solution 6.36, we have

EK = ρ

8

a2g

sinh(kH)

sinh(2kH)

cosh(kH)
,

= ρa2g

8

sinh(2kH)

cosh(kH)sinh(kH)
,

= ρa2g

8

2sinh(2kH)

sinh(2kH)
,

EK = ρa2g

4
. (6.46)

Now, the potential energy per unit of surface area during a wave period may
be expressed as

EP = 1

T

∫ T

0

∫ η

0
ρg zdz dt . (6.47)

By the integration equation 6.47 with respect to z and using the expression of
η (equation 6.26), we find that

EP = 1

T

∫ T

0

ρg z2

2

∣∣∣∣η
0

dt ,

= 1

T

∫ T

0

ρgη2

2
dt ,

= 1

T

∫ T

0

ρg a2

2
cos2(ki xi −ωt ) dt

Applying the time average (Equation 6.44) and solving the integral, similar to
the case when obtaining equation 6.45, the potential energy is

EP = 1

T

(
ρg a2

2

)
T

2
= ρg a2

4
. (6.48)
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As observed, assuming that the wave is not damped, the mean wave energy
along one wave period is equally partitioned between potential and kinetic ener-
gies.

Combining the equations 6.46 and 6.48, the mean total energy per unit area
(J/m2) is given by

Et = ρg a2

2
. (6.49)

As the wave propagates, its energy is transported. Thus, the wave energy flux
through a vertical plane of units of width perpendicular to the wave direction can
be obtained through the energy equation. Now we leave it as an exercise to show
that the rate of flux energy is given by

FE = ρg a2

2︸ ︷︷ ︸
wave energy

c

2

(
2kH

sinh(2kH)
+1

)
︸ ︷︷ ︸

wave energy velocity

. (6.50)

The field velocity obtained in 6.37 predicts that the particle path is closed
(Figure 6.11), which means that the particles return to their original position after
wave evolution, and consequently the wave does not transport mass, just energy
(Equation 6.50). This is observed since we linearized our problem and assumed
that η≈ 0. However, water particles in the wave crest travel faster than at great
depths, so we observe a small net forward movement, which is called Stokes drift.

Figure 6.12 Mean horizontal flow
associated to stokes drift under a
periodic surface wave.

6.1.4 Stokes drift

The strokes drift is a small forward net movement induced by wave propagation,
which decreases exponentially with higher depths (Figure 6.12). Since we lin-
earized the governing equations in Section 6.1.1 (a/H ¿ 1), we neglected the
contribution of the horizontal velocity near the wave crest. Taking into account a
small displacement of the fluid parcel from the mean position due to the Stokes
drift, the magnitude of the net drift can easily be estimated. Applying a Tay-
lor expansion around the mean position of the horizontal velocity component
(equation 6.37a), we have the following.

us(x +xs , z + zs) ≈ u(x, z)+xs
∂u

∂x

∣∣∣∣
x,z

+ zs
∂u

∂z

∣∣∣∣
x,z

, (6.51)

in which xs and zs are the small net displacements in the horizontal and vertical
directions as a result of the Stokes drift, respectively. Both displacements can be
obtained through the integration in time of equations 6.37:

xs(x, z, t ) =−akg

ω2

cosh(k(z +H))

cosh(kH)
sin(kx −ωt ), (6.52a)

zs(x, z, t ) = akg

ω2

sinh(k(z +H))

cosh(kH)
cos(kx −ωt ), (6.52b)
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assuming that ω2 is defined by the dispersion relation 6.36, the system 6.52
reduces to

xs(x, z, t ) =−a
cosh(k(z +H))

sinh(kH)
sin(kx −ωt ), (6.53a)

zs(x, z, t ) = a
sinh(k(z +H))

sinh(kH)
cos(kx −ωt ). (6.53b)

Applying the horizontal velocity 6.37a to the expansion defined in equation
6.51 and the horizontal and vertical displacement determined in 6.53, we may
obtain the following.

us = ag k

ω

cosh(k(z +H))

cosh(kH)
cos(kx −ωt )+ a2k2g

ω

1

cosh(kH)sinh(kH)(
cosh2(k(z +H))sin2(kx −ωt )+ sinh2(k(z +H))cos2(kx −ωt )

)
Figure 6.13 Amphidromic systemTaking the average over a wave period, we find that

us = a2k2g

ω

1

sinh(2kH)

(
cosh2(k(z +H))+ sinh2(k(z +H))

)

us = a2k2g

ω

cosh(2k(z +H))

sinh(2kH)
, (6.54)

in which us expresses the Stokes drift velocity (Figure 6.12).

6.1.5 Kelvin waves

William Thomson (Baron Kelvin)
(1824–1907, British) was born in Belfast.
He was a mathematical physicist and
engineer. Due to his achievements in
thermodynamics and of his opposition
to Irish Home Rule, he became Baron
Kelvin. He was the pioneer of vortex
dynamic (Kelvin-Helmholtz instabilities)
and has also determined the correct
value of absolute zero (the lower limit
to temperature). This absolute scale
is known today as the Kelvin thermo-
dynamic temperature scale in honor of
him. Baron Kelvin was the first to identify
the large-scale trapped gravity wave af-
fected by Earth’s rotation (now known as
Kelvin waves).

Figure 6.14 Kelvin wave.

Kelvin wave is a large-scale (low-frequency) trapped gravity wave affected
by Earth’s rotation that propagates in a shallow-water system, presenting an
exponential decay away from the boundaries (Figure 6.14). The Kelvin wave
balances the Coriolis force against a topographic boundary, moving equatorward
and poleward along the western and eastern boundaries, respectively (Figure
6.13). In a closed basin, the Kelvin wave propagates cyclonically with a typical
amphidromic structure.
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The water is deflected by the rotation of the Earth through the Coriolis force,
which deflects the wave. However, due to the topography boundaries, the water
portion is piled up on the boundary.

Mathematically, we can obtain the solution of Kelvin waves taking into ac-
count the Coriolis force from 2.46.

%

(
∂ui

∂t
+u j

∂ui

∂x j

)
=− ∂P

∂xi
+%gi −2%εi j kω j uk . (6.55)

Recall that the second term of 6.55 can be neglected by a linearization pro-
cedure, assuming that the wavelength is much larger than the amplitude of the
wave (a ¿λ). This simplification reduces equation 6.55 to

∂ui

∂t
=−1

%

∂P

∂xi
+ gi −2εi j kω j uk . (6.56)

Kelvin waves in the equator
There is a special type of Kelvin
wave, defined as the equatorial
Kelvin wave, that is trapped close
to the equator. The balances of
Coriolis forces from both hemi-
spheres act analogously as a topo-
graphic boundary.
The mathematical solution is simi-
lar to that derived from the Kelvin
waves (coastal Kelvin wave). How-
ever, since the Coriolis frequency
is zero ( f = 0) in the equator, equa-
tion 6.109 must be parameterized
by an artificial coefficient.

Table 6.5 Equatorial Kelvin wave.

Assuming the coordinate system as shown in Figure 6.14, we see that 6.56 can
be simplified as

∂u

∂t
=−1

%

∂P

∂x
+��>

= 0
gx + f ��

= 0
v , (6.57a)

�
�
��
= 0

∂v

∂t
=−1

%

∂P

∂y
+��>

= 0
g y − f u, (6.57b)

�
�
�7
= 0

∂w

∂t
=−1

%

∂P

∂z
− g . (6.57c)

Note that the velocity in y −direction is zero at the boundaries and the accel-
eration in z direction is neglected.

Assuming a general solution of η= a(y) exp−i (kx−ωt ), from 6.57cc, we have

∂P

∂z
=−%g

∫ bottom

surface
dP =−%g (−H −η) = %g (H +η) (6.58)

From 6.58, 6.57a can be reduced to

∂u

∂t
=−g

∂η

∂x
(6.59)

Poicaré wave
Another type of wave affected
by the Coriolis effect is Poicaré
waves. Unlike the Kelvin wave, the
Poicaré wave is dispersive and has
a phase velocity different from
the waves that are not affected by
Coriolis.
To obtain the solution for Poicaré
waves, assume conditions simi-
lar to Kelvin waves, but assume
that the deflection due to the Cori-
olis force induces a velocity in
y-direction.

Table 6.6 Poicaré waves.

Taking 6.57b in time and applying 6.59 and 6.58 to it and assuming the general
solution of η, give us

∂

∂t

∂P

∂y
=−% f

∂u

∂t

∂

∂y

∂η

∂t
= f

∂η

∂x

iω
∂a(y)

∂y
=−i k f a(y)
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∂a(y)

∂y
+ f

cp
a(y) = 0,

in which cp =ω/k. This equation is a differential equation that can be solved by
separation, which results in

η= ao exp
− f

cp
y

exp−i (kx−ωt ) (6.60)

Applying 6.59 to the mass conservation equation and assuming that the ver-
tical velocity w is approximated by the surface velocity of the water pointing
upward, we can find the wave equation, similar to that found in table 6.3, consid-
ering the shallow water solution:∫ bottom

surface
dw =

∫ -H

η≈0

∂u

∂x
dz

−wsurface =−∂u

∂x

(
−H

)
∂η

∂t
+H

∂u

∂x
= 0

∂2η

∂t 2 − g H
∂2η

∂x2 = 0. (6.61)

The partial differential equation 6.61 can be solved by applying the general
solution of 6.60. Note that the partial differential equation is independent of the
variable y , indicating that the phase velocity of the Kelvin waves is the same as
that for the non-rotating case.

The influence of rotation is limited to the new term 6.60 (exp
− f

cp
y

). The f /cp

is known as the Rossby radius of deformation LR and describes the length scale
at which the Coriolis effect becomes important in wave motion. In the ocean,
LR is strongly affected by latitude and depth of water, varying from 10 km in
high-latitude regions to more than 2000 km in the deep sea near the equator.

6.2 Interfacial wave in a two-layer system

Interfacial waves are generalizations of free surface waves that have been studied
in the previous section. Instead of free surface waves, where the upper layer is
air (or any lighter fluid compared to the fluid above), we now consider that both
fluids have comparable densities.
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Figure 6.15 Interfacial wave in a bounded system.

Although interfacial waves do not represent the continuous stratification of a
natural environment, they remain a good approximation of density structure in
many situations. We start our analysis by considering a two-layer system made
up of two immiscible fluids (Figure 6.15). As a first example, we consider the
hydrostatic approximation, valid only when the horizontal scale is large compared
to depth, characterizing a shallow-water solution (similar solution discussed in
Table 6.3).

6.2.1 Solution for shallow water

Based on the situation depicted in figure 6.15, our first step is to derive for each
layer the governing equations for nonrotating shallow-water flow:

∂us

∂t
=− 1

%s

∂Ps

∂x
, (6.62a)

�
��

∂ws

∂t
=− 1

%s

∂Ps

∂z
− g , (6.62b)

∂us

∂x
+ ∂ws

∂z
= 0, (6.62c)

where the subscript s indicates the layer, where s = 1 and s = 2 represent the
upper and lower layer, respectively. We neglect ws from the momentum equation
for z-direction, which results in a hydrostatic approximation.

The displacement of the interface between fluids 1 and 2 is given by the
sinusoidal wave shape with wave number k2 and angular frequency ω2 (similar
to the one used to describe surface waves in 6.27):

ζ2(x, t ) = ai ei(k2x−ω2t ), (6.63)

in which ai is the amplitude of the interfacial wave. Note that the water surface is
also free to oscillate. Therefore, we can also represent the surface displacement
by a sinusoidal function η1:

ζ1(x, t ) = ao ei(k1x−ω1t ), (6.64)
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in which ao is the amplitude of the surface wave.
Since the dynamic does not influence the pressure in z −direction (w = 0),

we obtain from equation 6.62b that the pressure distribution in each layer is given
by the hydrostatic pressure for each layer:

P1(x, z, t ) = ρ1g (ζ1 − z) ζ2 ≤ z ≤ ζ1, (6.65)

P2(x, z, t ) = ρ1g (ζ1 −ζ2)+ρ2g (−z +ζ2) −H ≤ z ≤ ζ2, (6.66)

in which H = H1 +H2 is the total water depth.
Applying equations 6.65 and 6.66 to 6.62a, give

∂u1

∂t
=−g

∂ζ1

∂x
(6.67a)

∂u2

∂t
=−ρ1

ρ2
g
∂ζ1 −ζ2

∂x
− g

∂ζ2

∂x
. (6.67b)

Combining the two equations, assuming û = u2 −u1 and neglecting surface
displacement (ζ1 = 0), we have the following.

∂û

∂t
=−g

∆ρ

ρ2

∂ζ

∂x
=−g ′ ∂ζ

∂x
. (6.68)

The second equation can be found by combining the mass conservation
equations of each layer. Thus, assuming that û = u2 −u1 and ζ1 = 0, we find the
following. ∫ −h1

0
dw1 =−

∫ −h1

0

∂u1

∂x
dz (6.69a)∫ −H

−h1

dw2 =−
∫ −H

−h1

∂u2

∂x
dz (6.69b)

∂ζ1

∂t
− ∂ζ2

∂t
=−h1

∂u1

∂x
(6.70a)

−∂ζ2

∂t
=−(−H +h1)

∂u2

∂x
= h2

∂u2

∂x
(6.70b)

∂û

∂x
=−

(
h1 +h2

h1 h2

)
∂ζ2

∂t
(6.71)

Combining equations 6.71 and 6.68, we have the partial differential equation
for a shallow-water interfacial wave:

∂2ζ2

∂t 2 − g ′H
∂2ζ2

∂x2 = 0, (6.72)

in which g ′ =∆ρ/ρ2 is the reduced gravity and H = h1 h2/H is the relative depth
of the water.
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Note that the interfacial displacement ζ2(x, t ) used here is a function defined
from the upper boundary, where x = 0. However, to define the interfacial dis-
placement as described by 6.64, we must consider ζz=0 = ζz=−h1 −h1. Applying ζ2

to the partial differential equation 6.72 and deriving it from t and x, we find that

cp =
√

g ′ h1 h2

h1 +h2
, (6.73)

where cp is the phase speed of propagation of the baroclinic mode in a shallow
water system. This result is a generalization of the result from the free surface
wave (Equation 6.40). Because g ′ ¿ g , interfacial waves are much slower than
surface waves, resulting in much longer periods.

We may derive the phase velocity 6.73 to obtain the period of the interfacial
wave T . Assuming that cp =ω/k, we may find that

cp = ω

k
= 2π f λ

2π
= f λ= λ

T
;

T = λ

cp
(6.74)

One of the first observation of internal waves was noted by Benjamin Franklin
during an expedition to Madeira in 1761. He noted that when his boat began to
roll, waves formed in his Italian lamp made in an empty glass jar filled with oil
and water (Figure 6.16). However, the waves were not on top; the surface of the
oil was quiet. He noted that waves formed between the water and the oil.

The first scientific observations of internal waves in the natural environment
were made by Nansen (1897) during an expedition to the North Pole in 1893.
Nansen felt an extra drag on his boat due to internal waves, which slowed his boat
to a quarter of its normal speed.

“Fram appeared to be held back, as if by some mysterious force,
and she did not always answer the helm. In calm weather,

with a light cargo, Fram was capable of 6 to 7 knots.
When in dead water she was unable

to make 1.5 knots1.”
F. Nansen (1897)

Figure 6.16 Italian lamp made in
an empty glass jar, filled with oil
and water

Ekman (1904) was the first to provide a reasonable interpretation of the phe-
nomenon. In the preface to Ekman’s paper, Bjerknes said:

“The present investigation of “Dead-Water” was occasioned by a letter in November
1898 from Prof. NANSEN asking my opinion on the subject. In my reply to Prof.

NANSEN I remarked that in the case of a layer of fresh water resting on the top of
salt water, a ship will not only produce the ordinary visible waves at the boundary

1The knot is a unit of speed equal to one nautical mile per hour, 1 knot ≡ 1.852 km/h
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between the water and the air, but will also generate invisible waves at the
salt-water fresh-water boundary below; I suggested that the great resistance

experienced by the ship was due to the work done in generating these invisible
waves.”

Vagn Walfrid Ekman (1904)

He explained that energy from the ship is transmitted to internal waves, which
occur between layers of different densities. The boat experiences an important
loss of steering power and consequently the speed of the ship decreases dramati-
cally. He supported this claim with several laboratory experiments.

Equation 6.73 has been derived from the hydrostatic condition, which con-
siders that the pressure is given only by the hydrostatic contribution. This ap-
proximation neglects the vertical momentum by taking the contribution of the
vertical velocity. This results in a non-dispersive solution, which is valid only
for shallow-water waves, when λÀ H . Although this is a good approximation
in many large-scale motions (large internal waves), those waves may also be
susceptible to non-hydrostatic effects, which usually rise at a minimum grid
scale (Wadzuk, Hodges, 2004), where the nonlinear effect could also be impor-
tant. Often, the hydrostatic approximation fails at open boundaries (), at steep
slopes (), and when linear motions degenerate into high-frequency waves (Horn
et al., 1998, 2001). Although non-hydrostatic flows often behave also non-linearly,
in the next section we ignore non-linear effects and take into account just the
non-hydrostatic contribution.

6.2.2 Non-hydrostatic solution

Now we solve the previous problem assuming a non-hydrostatic solution, which
is similar to the approach used to find the solution for surface waves in Section
6.1.1.

According to Kelvin’s circulation theorem, since we assume that each layer
has a homogeneous density (Figure 6.15), the viscous effects are ignored and
the Coriolis force neglected. Considering that the result motion for each layer is
irrotational, an independent velocity potential (equation 2.42) can be defined in
each layer. Rewrite the mass conservation equation 6.62c for the direction x − z
as Laplace equation for each layer, which gives us

∂2φ1

∂x2 + ∂2φ1

∂z2 = 0, (6.75a)

∂2φ2

∂x2 + ∂2φ2

∂z2 = 0, (6.75b)

in which equations 6.75 refer to mass conservation in the upper and lower layers,
respectively. For a cosine dependence, the potential velocities φ1 and φ2 that
satisfy the Laplace equations 6.75 are, respectively, of the form

φ1(x, z, t ) = f1(z) ei (kx−ωt ), (6.76a)

φ2(x, z, t ) = f2(z) ei (kx−ωt ). (6.76b)
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Substituting equations 6.76 into the Laplace equation gives us a second-
order linear homogeneous differential equation with two linearly independent
solutions. The general solution assumes the following form:

f1(z) =C1 ekz +C2 e−kz , (6.77a)

f2(z) =C3 ekz +C4 e−kz , (6.77b)

in which the constants C1, C2, C3, and C4 can be determined from the boundary
conditions.

Assuming that the coordinate system is referenced (z = 0) at the upper layer
boundary, we have the following:

∇∼φ1 · n̂∼|z=0 = 0, (6.78a)

∇∼φ2 · n̂∼|z=−H = 0, (6.78b)

in which H = h1 +h2.
Applying the general solution 6.76a in the rigid upper condition 6.78a gives

C1 =C2, in which C3 can be obtained from the boundary condition at the bottom
6.78b:

∂φ2

∂z

∣∣∣∣
z=−H

= 0 C3 =C4 e2kz . (6.79)

We can obtain a new relation between coefficient C1 and C2 using the kine-
matic boundary condition at the interface for the upper layer. The boundary
condition at the interface between the two fluids must be satisfied for such a wave
to move (similarly to that obtained from surface waves 6.10), so in this case we
have the following.

{x2 −x1,0,ζ(x2, t2)−ζ(x1, t1)} =∆t {us , vs , ws} , (6.80)

in which η is the interfacial wave function and s indicates the layer number.
Expanding ζ(x2, t2) in a Taylor series, we have the following.

ζ(x2, t2) ≈ ζ(x1, t2)+ (x2 −x1)
∂ζ(x1, t2)

∂x
, (6.81)

which can be easily applied to equation 6.80. From z component, we have

ζ(x1, t2)−ζ(x1, t1)

∆t
+ ∆x

∆t

∂ζ

∂x
= ws ,

in which ∆x/∆t = us and t2 → t1, with the result that

∂ζ

∂t
+us

∂ζs

∂x
= ∂φ

∂z
on z = ζ(x, t ). (6.82)

Now we apply a linearization procedure, which assumes that the interfacial
wave has a small amplitude compared to the wavelength (b ¿ λ). Here, we
do not show that nonlinear terms have O (b/λ). A detailed procedure can be
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performed by dimensional analysis, similar to that applied to surface waves in
section 6.12. The linearization procedure leads to a linear form of the equation
6.82 by neglecting the second term on the left side.

Note that the equation is evaluated at z = ζ(x, t). So, assuming a lineariza-
tion, we can simplify the term expanding in a Taylor series around z =−h1 and
neglecting the higher-order terms. Thus, the kinematic boundary condition for
both layers at the interface becomes the following.

∂φs

∂z

∣∣∣∣
z=−h1

≈ ∂ζ

∂t
. (6.83)

Assuming that the interfacial displacement is represented by the sinusoidal
wave form 6.64, and applying the general solution 6.76a in the kinematic bound-
ary conditions 6.83 for the upper and lower layers, give us the following.

C1 =C2 =− i bω

k

1

e−kh1 −ekh1
, (6.84a)

C4 =− i bω

k

1

e2kH e−kh1 −ekh1
, (6.84b)

where C3 can be obtained from 6.79,

C3 =− i bω

k

e2kH

e2kH e−kh1 −ekh1
(6.85)

The last two boundary conditions come from the momentum equation in
z-direction and are known as the dynamic boundary condition. Assuming an
inviscid and irrotational flow, we obtain the unsteady Bernoulli equation.

ρs
∂φs

∂t
+ρ

(
u2

s +w2
s

2

)
+Ps +ρs g zs = F (t ), (6.86)

which is constant along a streamline. F (t) can be absorbed by the potential
velocity, since it is just a function of t . Equation 6.86 can be applied to the
interfacial wave function (z = ζ).

Assuming small-amplitude surface waves (b ¿λ), the nonlinear kinetic en-
ergy term can be neglected in equation 6.86. Since we are assuming that the wave
has a small amplitude, we can expand the equation in a Taylor series around
z =−h1 (equilibrium position) and neglect higher-order terms. Finally, we have

ρs
∂φs

∂t

∣∣∣∣
z=−h1

+ρs gζ≈ F (t ). (6.87)

Selecting the fluid interface as the streamline and applying the unsteady
Bernoulli equation to it gives the following.

ρ1
∂φ1

∂t

∣∣∣∣
z=−h1

= ρ2
∂φ2

∂t

∣∣∣∣
z=−h1

+∆ρgζ. (6.88)
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Substitution of equations 6.84, 6.85, 6.76, and 6.77 into equation 6.88 gives us
the dispersion relation:

ρ1

(
e−kh1 +ekh1

ekh1 −e−kh1

)
+ρ2

(
ekh2 +e−kh2

ekh2 −ekh2

)
= kg∆ρ

ω2

ω2 =∆ρg k
tanh(kh1) tanh(kh2)

ρ2 tanh(kh1)+ρ1 tanh(kh2)
(6.89)

The dispersion relation 6.89 describes the propagation of a small-amplitude
interfacial wave, in which the second order in ω indicates that the wave travels
with a single speed but in two directions. The difference from that obtained
for shallow waters (equation 6.73) is that the dispersion relation 6.89 is a gen-
eralization of the hydrostatic solution, which describes the evolution of just
non-dispersive interfacial waves.

Often large-amplitude propagating internal waves are accompanied by sur-
face waves or ripple patterns at the water surface due to the nonlinear effects
of internal waves (Hutter et al., 2011). In oceans and large lakes, these ripple
patterns increase the roughness of the surface of the water, allowing detection
by SAR images 6.17. Due to the alternating pattern of quasiperiodic bright and
dark bands against a gray background caused by the ripple patters created on
the water surface, SAR images can detect the surface variation, which is directly
correlated to the propagation of internal waves. In medium to small lakes, the
small image resolution prevents the detection of high-frequency internal waves
by SAR images. In large closed basins, standing internal waves (discussed in more
detail in Section 7.1) can be detected by oscillations at the water surface. Lemmin
et al. (2005) analyzed large-internal waves in lakes through surface-level variation;
often surface waves associated with internal waves are typically 100 to 1000 times
smaller than internal waves, depending on the density gradient.

Figure 6.17 SAR image from the Gulf of Maine west of Cape Cod on 3 July
2008, at 22:26. The image shows the signatures of the internal wave packets.
Assembled from (?)



6.2 Interfacial wave in a two-layer system 121

A nonhydrostatic solution for an open upper boundary can be obtained
similar to the one obtained previously for interfacial waves in section ??.

T These solution is left for
reader to solve. See exer-
cises 6.7 and 6.8.

The solution of this problem is left to the reader to solve. After working
through the algebra and assuming the non-hydrostatic case, the dispersion rela-
tion for an open boundary condition is given by

ω2 = g

2(βρ Γ+1)

(
(Γ1 +Γ2)±

√
(Γ1 +Γ2)2 +4Γ(βρ Γ−1)(βρ−1)

)
, (6.90)

in which βρ = %1/%2, Γ1 = tanh(k h1), Γ2 = tanh(k h2), and Γ= Γ1 Γ2.
Note that the dispersion relation 6.90 provides four solutions of four orders

in ω. The solution can be grouped into two modes, each group allowing the
wave to travel in two directions. The wave modes are distinguished by the wave
period but have many other differences in the wave property. The solution of a
shorter period describes the barotropic mode, where the wave on the surface of
the water is greater than the interfacial wave (Figure 6.18). Because the density
difference in the interior of the water is very small compared to the water-air
density difference, the internal waves have lower velocities and longer periods
than the surface waves. Due to the effect of reduced gravity across the water body,
surface waves travel more than 50 times faster than the speed of internal waves.

Figure 6.18 Surface and internal waves in barotropic and baroclinic mode.

The barotropic mode, also called the external, fast, and sinuous mode, has
isobars parallel to isopycnals, lines of equal water density. The motion of the water
behaves as if the water body is not stratified, presenting an in-phase response
between the internal and surface waves (Figure 6.18).

The longer-period solution describes the baroclinic mode, which is also called
the internal, slow, and varicose mode. The baroclinic mode has internal waves
with amplitudes larger than those of surface waves (Figure 6.18). In this case, the
isopycnals and isobars are inclined to each other, and the angle of this inclination
depends on the stratification profile.

6.2.3 Interfacial wave energy

We may estimate the energy of internal seiches similarly to what we estimated in
section ?? for surface waves, combining the contribution of kinetic and potential
energies.

Assuming that the wave energy is equally partitioned between potential and
kinetic energies along one wave cycle, the averaged kinetic energy of the internal
wave can be defined as
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EK = 1

TV1H1

∫ T

0

∫ ∀

0

ρ u2

2
d∀ dt , (6.91)

in which

6.2.4 Interfacial seiche

In stratified closed basins, the wind that acts on the surface of the water favors
the formation not only of a standing surface wave, but also a standing interfa-
cial wave, which often has a wavelength comparable to the length of the lake
(Mortimer, 1952). The wind introduces kinetic energy to the surface of the water.
The transfer of momentum caused by wind stress pushes the surface water to
the leeward shore, causing a surface displacement, called wind set-up. If wind
stress is applied for a sufficient time, the horizontal pressure gradient increases
and hypolimnion water accelerates in the upwind direction. Consequently, the
hypolimnion and epilimnion layers are tilted, as shown in Figure 6.19. When the
wind stops, the tilted layers flow back towards equilibrium. However, the mo-
mentum is considerable, and the equilibrium is overshot, resulting in a rocking
motion about nodal points.

Figure 6.19 Sketch of a standing interfacial wave for the baroclininc mode
formed a two-layer system.

Similarly to propagating waves, seiche can be classified as barotropic or baro-
clinic depending on the most dominant wave excited (Figure 6.20). The modes
have properties similar to those described for propagating waves. The baro-
clinic mode has a higher internal amplitude compared to the surface amplitude,
presenting an out-of-phase response.

Figure 6.20 Barotropic and baro-
clininc modes for seiche waves in
a closed basin.

Internal seiche in lakes has been observed primarily by (Thoulet, 1894) who
observed a temperature oscillation with higher amplitude at middle depths. How-
ever, the first right interpretation was provided by Watson (1903) during a field
campaign in Lake Loch Ness, which reported:

“I concluded from these observations, and others taken at different parts of the
loch, that is an internal oscillation in the water – an internal seiche (...)”

E.R. Watson (1903).

Watson (1903) gave the first correct interpretation of internal waves, conclud-
ing that this temperature oscillation was caused by a uninodal baroclinc internal
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wave in Lake Loch Ness. Motivated by his earlier observations, Watson (1904)
developed the first equation to determine the internal wave period, a hydrostatic
solution for a rectangular basin, known as Watson’s equation (adapted Merian’s
equation). He observed that the periods of these oscillations found fair agreement
between the observed and calculated periods. In those early years, Wedderburn
and colleagues (Wedderburn, Williams, 1911; Wedderburn, 1912; Wedderburn,
Young, 1915) provided guidelines to spread the knowledge about internal seiches
in stratified basins that he called internal as "temperature seiches".

Although Wedderburn has notable improvements in theory and observations
of internal seiches in closed basins, many limnologists disbelieved that internal
waves could be important or even exist within thermal stratified lakes. The phe-
nomenon was doubted until 1952, when finally Mortimer (1952) demonstrated
its universality and importance in detail. He investigated the formation of large
internal seiches generated by wind forcing in Lake Windermere analyzing a long
time series of measurements with moored thermistor chains. In the isotherm
analysis, Mortimer (1952) observed an internal seiche with periods of 18 h to 19 h
that was well represented by the Watson’s formula (deviation lower than 5%). He
concluded that one of the main effects of the wind action in stratified basins is to
generate internal seiches.

Mortimer had worked extensively on internal waves, providing many infor-
mation about the physical processes of internal waves in lakes and reservoirs
(Mortimer, 1950; ?, 1952, 1953, 1955, 1971, 1979, 2004).

Clifford H. Mortimer (1911–2010,
British) was born in Bristol (England).
He was a zoologist and geneticist. Dur-
ing the Second World War, he was re-
cruited to work in the Oceanographic
Group of the Admiralty Research Labo-
ratory, where we have gained sufficient
knowledge in dynamic oceanography.
Mortimer was elected to Royal Soci-
ety, London and lifetime membership
of the American Society of Limnology
and Oceanography (ASLO). He worked
extensively to interpret the physical pro-
cesses that lie behind the lakes’ data.
His papers and books are landmarks in
the understanding of the dynamics of
internal waves.

The evolution of internal seiches has been detected through temperature mea-
surements () and field velocity data sets (). The oscillatory motion due to internal
seiche, which most of the time is hidden by other fluctuations, is often reveled
through the power spectral density obtained from Welch’s methods (Welch, 1967),
explained in detail in Chapter 5.5.1.

Due to the out-of-phase response between surface and internal waves during
baroclininc modes, studies have detected large internal waves in lakes through
surface level variation (Lemmin et al., 2005). Lemmin, D’Adamo (1997) Winds
from the northeast were responsible for the generation of a large internal seiche
with an amplitude of approximately 20 meters.

The mathematical solution for internal seiches is quite similar to that de-
scribed in Sections 6.2.1 and 6.2.2 for propagating interfacial waves, with the
exception that in a close basin, a new boundary condition is applied to describe
wave reflection on the basin shore. Since the end wall of the basin allows the
wave to move freely in the vertical direction, the wave is reflected pointing in the
same direction, which means that an upward displaced pulse will also generate a
reflected wave pointing upward (Figure 6.21).
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Figure 6.21 Standing interfacial wave formed by a superposition between
interfacial waves ζ′ and ζ′′. Unlike Figure 6.19, the standing wave formed
here has four nodes formed by two waves traveling on the right side of the
tank and two reflected waves traveling in the opposite direction. Although
fundamental internal seiche is often observed in lakes and reservoirs (Fig-
ure 6.19), higher horizontal baroclinic modes are also susceptible to being
excited in stratified basins. Note that the superposition doubles the wave
amplitude ai .

The wave superposition modify the sinusoidal wave form 6.64. For a finite-
sized longitudinal region, the wave is confined within the system, and the wave
form must be described by a superposition of wave modes. This occurs only at
certain frequencies and can be obtained from the trigonometric functions as

ζ(x, t ) = ζ′+ζ′′ = ai ei(kx−ωt ) +ai ei(−kx−ωt ),

ζ(x, t ) = ai (eikx +e−ikx ) e−iωt = 2ai ei(kx−ωt ), (6.92)

in which ζ′ and ζ′′ are waves traveling in opposite directions. ai is the wave
amplitude of ζ′ and ζ′′. Note that the constructive superposition between waves
ζ′ and ζ′′ displaces an amount equal to twice the wave amplitude, Ai = 2 ai .

Trigonometric and Hyperbolic
functions
The trigonometric and hyperbolic
functions can be obtained assum-
ing the following relations:

ei x = cos x + i sin x, (6.93a)

ex = cosh x + i sinh x, (6.93b)

resulting in

sin x = ei x −e−i x

2i
, (6.94a)

cos x = ei x +e−i x

2
, (6.94b)

sinh x = ex −e−x

2
, (6.94c)

cosh x = ex +e−x

2
. (6.94d)

Table 6.7 Trigonometric functions
in terms of exponential functions.

Taking into account the effect of lateral boundaries, the interfacial wave has
maximum vertical displacement when

ζ(x = 0, t ) = ζ(x = L, t ) = Ai , (6.95)

in which L is the basin length and Ai is the wave amplitude (maximum vertical
displacement assuming the wave form 6.92. From the wave form 6.92, the bound-
ary conditions 6.95, and considering that the wave number is defined as k = 2π/λ,
where λ is the wavelength, we obtain the condition for the standing wave:

cos
2πx

λ
e−iωt

∣∣∣∣
x=0,L

= 1. (6.96)

Note that the only way to satisfy always the condition 6.96 is when

2πx

λ

∣∣∣∣
x=0,L

= m π, (6.97)

in which m = 1,2,3,4, . . . (π,2π,3π,4π, . . . ).
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Finally, by rearranging, we find that

λ= 2L

m
, (6.98)

in which fundamental interfacial seiche (Figure 6.19) is always generated for
m = 1. For higher horizontal modes, the wave length is shorter, resulting in higher
m values. Figure 6.21 has m = 4 (four nodes).

Applying condition 6.98 to some general solution of the propagating wave, we
get the solution for standing internal waves. For example, assuming the interfacial
period obtained from the hydrostatic solution 6.74 (T ) and applying the condition
6.98 gives us the following.

T = λ

cp
= 2L

m cp
, (6.99)

in which L is the basin length and cp is the phase speed of the internal seiche.
Note that the length of the basin for the internal seiche L depicted in Figure 6.21
is easily represented by the length of the basin at the water surface. However,
increasing the complexity of the bathymetry (Figure 6.19), the basin length is
not easily defined. In this case, the basin length L must be defined taking into
account the depth in which the interfacial seiche is excited.

6.2.5 Fundamental internal seiche amplitude

The wave amplitude of the fundamental internal seiche may be estimated for
the idealized two-layer rectangular box tank through the governing equation of
motion, more specifically using the momentum equation for x-direction in a
non-rotating frame of reference assuming shallow waters. We assume that the
basin has only two layers and that the system is forced by an instantaneous wind
shear stress (Figure 6.22). This model scheme is similar to the model derived in
Section 6.2.1, but here we take into account the contribution of the wind stress
u∗ to the water surface.

Figure 6.22 Stable two-layer system (ρ2 > ρ1) in a rectangular basin. The
vertical coordinate is positive above the water surface. H is the thickness of
the equilibrium layer, while h is the thickness of the local layer. η and ζ de-
scribe the interfacial movement between two fluids with different densities
(referenced from z = 0).
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Firstly we must derive the momentum equation in a non-rotating frame of
reference for shallow-water waves. Basically, the solution is derived from the
two-layer model.

The pressure distribution along the water column within each layer is as
follows:

P1(x, z, t ) = ρ1g (−z +η), (6.100a)

P2(x, z, t ) = ρ1g (η−ζ)+ρ2g (−z +ζ), (6.100b)

in which P is the hydrostatic pressure, ρ is the fluid density, g is the acceleration
of gravity, and η and ζ are the interfacial displacement of the surface and internal
wave, respectively.

The momentum equation for x-direction can be applied for each layer (equa-
tion 6.62a). Unlike Equation 6.62a, an additional term is added on the right side
accounting for the contribution of the wind stress u∗ to the water surface.

∂u1

∂t
=− 1

ρ1

∂P1

∂x
+ u2∗

H1
, (6.101a)

∂u2

∂t
=− 1

ρ2

∂P2

∂x
, (6.101b)

where u is the horizontal velocity and H1 is the thickness of the equilibrium upper
layer.

Substituting equations 6.100 into 6.101 gives:

∂u1

∂t
=−g

∂η

∂x
+ u2∗

H1
, (6.102a)

∂u2

∂t
=−ρ1

ρ2
g
∂η

∂x
− ρ2 −ρ1

ρ2
g
∂ζ

∂x
. (6.102b)

Let us write equation 6.102 in a more compact form, assuming that η= ζo :

∂ui

∂t
=−g Ai , j

∂ζ j

∂x
+ u2∗

H1
δi 1, (6.103)

in which δi 1 = 1 only for i = 1, in all other cases δi 1 = 0. The matrix Ai , j is defined
as:

Ai , j =
(

1 0
ρ1/ρ2 ∆ρ/ρ2

)
(6.104)

We can also apply the mass conservation equation 6.62c for each layer:

∂

∂t

(
η−ζ

)
=−H1

∂u1

∂x
, (6.105a)

∂

∂t

(
ζ−H

)
=−H2

∂u2

∂x
. (6.105b)
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Rearranging the equations 6.105a and 6.105b, we find the following.

∂u1

∂x
=− 1

H1

∂η

∂t
+ 1

H1

∂ζ

∂t
, (6.106a)

∂u2

∂x
=− 1

H2

∂ζ

∂t
, (6.106b)

which can also be written in a more compact form, as

∂ui

∂x
=−Bi , j

∂ζ j

∂t
, (6.107)

where η= ζo and Bi , j is:

Bi , j =
(
1/H1 −1/H1

0 −1/H2

)
(6.108)

Note that the derivation of equations 6.103 in x and 6.107 in time and the
combination of both solutions give us the following result.

∂2ζ j

∂t 2 − g
Ai , j

Bi , j

∂2ζ j

∂x2 = 0, (6.109)

which is similar to Equation 6.72. It is important to note that since wind stress
does not vary along the horizontal plane direction, wind does not play any role in
the internal wave speed. Shear stress only influences internal seiche growth.

Assuming that the horizontal velocity is zero when the interface present
maximum vertical displacement, the expressions for the first two layers are as
follows.

∂η

∂x
= u2∗

g H1
, (6.110a)

ρ1
∂η

∂x
=−(ρ2 −ρ1)g

∂ζ

∂x
. (6.110b)

Combining the equations 6.110a and 6.110b, we find

∂η

∂x
=−∆ρ

ρ1

∂ζ

∂x
= u2∗

g H1

∂ζ

∂x
=− ρ1

g∆ρ

u2∗
H1

=− u2∗
g ′ H1

, (6.111)

in which ζ is the internal seiche displacement (assuming the internal seiche mode
of V1H1), g ′ is the reduced gravity, u∗ is the wind stress and H1 is the thickness
of the equilibrium upper layer. Note that the negative sign in equation 6.111 is
related to the sign convention.

Integrating equation 6.111 and applying the lateral boundary conditions:

∆ζ(x = L/2) = a2 (6.112a)

∆ζ(x = 0) = 0, (6.112b)
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in which a2 is the initial internal seiche amplitude and L is the lake length (L = 0
is located in the lake center), we find that

∂ζ=−
∫ L/2

0

u2∗
g ′ H1

dx

a2 = 0.5
u2∗ L

g ′ H1
. (6.113)

Multiplying both sides of 6.113 by 1/H1, we get

a2

H1
= 1

2
W −1, (6.114)

in which W is the Wedderburn number. By compassion, we may state that for
W = 1, a2 = H1, which indicates that metalimnetic water will increase to the
surface. For higher values of W (in the literature, we may consider W > 30), the
system is too stable to generate a large vertical displacement. We may observe
that assuming W = 30, the vertical displacement would be of the order of 1% of
the thickness of the epilimnion.

6.2.6 Interfacial seiche affected by Earth’s rotation

Similarly to surface waves (Section 6.1.5), interfacial waves may also be affected by
Earth’s rotation, generating internal Kelvin and Poincaré waves. The geostrophic
force is balanced by the adjustment of the pressure and velocity fields. When
the system has lateral boundaries, the flow is trapped by the lateral boundaries,
which strongly influence the velocity fields.

The Coriolis force is proportional to the speed of Earth’s rotation, which may
vary depending on the latitude due to circumference of the Earth. At the equator,
the velocity is higher than near the poles, indicating a lower influence of the
Coriolis force. In the Arctic, even shorter waves may be influenced by Earth’s
rotation, which indicates that even small lakes are susceptible to being affected
by Coriolis forces.

Interfacial waves have another interesting behavior compared to surface
waves affected by the Coriolis force. Since they have a much smaller velocity
(higher period wave), the internal wave is more susceptible to be influenced by
Earth’s rotation (Bäuerle, 1994). Studies in Lake Uberlingen, which has a length
of just a few kilometers, have identified the evolution of Poicaré internal waves
(Bäuerle, 1994), one type of interfacial wave that is affected by Earth’s rotation.

To identify when the Coriolis force can affect the propagation of internal
waves, the Burger number Bu is often calculated (Antenucci, Imberger, 2003). The
Burger number is defined as the ratio of the internal Rossby radius of deformation
to a length scale L, which is often assumed to be the length of the basin. The Bu
can be written as

Bu = RR

L
≡ cp

ωoLp
, (6.115)
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Table 6.9 Burger numbers, Bu, for some lakes and reservoirs.

Basin Latitude Bu Source
Lake Mono 38◦ 01’ N 2.07 MacIntyre et al. (2009)
Lake Babine 54◦ 45’ N 0.53 Farmer (1978)
Lake Kinneret 32◦ 50’ N 0.56 Antenucci et al. (2000)
Lake Zurich 47◦ 13’ N 0.14 Horn et al. (1986)
Alpnacher See 46◦ 57’ N 0.22 Münnich et al. (1992)
Sau Reservoir 41◦ 58’ N 2.64 Vidal et al. (2005)

in which RR = cp /ωo is the Rossby deformation radius, cp is the non-rotating
internal wave velocity, and ωo = 2Ωsinα is the inertial frequency, where Ω =
7.2921 10−5 rad/s is the rotation rate of the Earth (equation 6.116) and α is the
latitude. In some cases, we approximate ωo = 10−4 Hz

Rotation rate of the Earth
The rotation rate of EarthΩ, which
is given in Hz, can be calculated as

Ω= 2π

Trot
, (6.116)

in which Trot is one sidereal day
(23 hours, 56 minutes, and 4.1
seconds), which represents the
Earth rotation relative to the star
position rather than the Sun.

Table 6.8 Rotation rate of the
Earth.

For a Burger number larger than unity, gravity force dominates, and the
modal models described previously are fully applicable. For Burger numbers
smaller than unity, the internal waves are affected by Earth’s rotation, changing
the internal wave velocity and the lateral distribution of the wave energy (Forcat
et al., 2011). As observed, the influence of earth rotation does not depend only
on the basin spatial scale, but also on the internal wave temporal evolution. In
Table 6.9 we summarize some different values of Bu for internal waves obtained
from different lakes and reservoirs where basin-scale internal waves have been
detected.

Interfacial Kelvin wave

Internal Kelvin waves are large-scale waves that are affected by Earth’s rotation
and have higher amplitude at the boundary, decaying exponentially with distance
from the lakeshore, where the wave is trapped. As a result, this motion normally
presents higher velocities close to the shore and lower ones in the interior of the
basin. Another general behavior of Kelvin waves is that they can travel along the
coast in one direction only. The pressure balances the Coriolis force, driving the
wave along the horizontal boundaries, clockwise in the Southern Hemisphere,
exactly as described by the surface wave in Section 6.1.5.

Studies have observed the formation of a fundamental internal Kelvin wave
with a period of 78 h in Lake Geneva (Bauerle, 1985). The amphidromic system
showed a clearly counterclockwise rotation (Figure ??), indicating a Kelvin-type
wave for the north hemisphere. Higher horizontal modes with opposite am-
phidromic phase, indicating mixed behaviors between Kelvin and Poicaré waves,
have also been observed ().

Interfacial Poicaré wave

Poincaré waves are also large-scale waves, but they are not trapped at boundaries.
This type of wave develops from cross-wise seiching, which becomes deflected



130 Chapter 6 Interfacial Wave

by the Coriolis force (Wüest, Lorke, 2003). They are often observed in a counter-
clockwise direction in the south hemisphere and by greater transverse velocities.
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Exercises

Exercises for 6.1 Free surface wave

P6.1 Torricelli’s equation is derived from steady Bernoulli’s principle and is
expressed as

u =√
2g H ,

in which g is the acceleration of gravity and H is the total depth of the
water (Figure 6.23). However, the steady Bernoulli principle neglects
the initial flow rate variation. Now consider the analysis of the initial
transient flow applying the unsteady Bernoulli principle (equation
6.22) and find an expression of u(t , H) for an initial transient flow.

Figure 6.23 Reservoir.

P6.2 Multiplying the Navier-Stokes equation (equation 2.49) by velocity and
using the polarization relations for surface waves show that the energy
flux of surface waves is given by equation 6.50.

P6.3 Based on solution for shallow water waves, presented in table 6.3,
shows the detailed simplification to obtain equation 6.30 and apply
the general solution to obtain the dispersion relation for shallow water
waves. Finally, compare the solution with the general solution (equa-
tion 6.36)

P6.4 Find the dispersion relation for Poicaré waves, looking for plane waves.
Start with the linear shallow-water equation and assume that the Corio-
lis frequency f and the water depth H are constants. TIP: align y −axis
with the wave crest, so ∂.

∂y = 0

Exercises for 6.2 Interfacial wave in a two-layer system

P6.5 The phase speed of the interfacial wave under a shallow water system
is given by

cp =
√

g ′ H1 H2

H1 +H2
,

where g ′ is the reduced gravity and H1 and H2 are the thicknesses of
the upper and lower layers. Based on this generalization, find the phase
speed of the free surface wave assuming that the upper layer (layer 1)
is the air layer above the water surface.

P6.6 From the dispersion relation for interfacial waves (nonhydrostatic so-
lution), find the dispersion relation for surface waves by assuming that
the upper layer is formed by an "air layer".
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P6.7 Based on the hydrostatic solution for the interfacial wave presented in
Section 6.2.1, solve the same problem assuming that the surface waves,
represented by a sinusoidal function η(x, t), propagate at the water
surface.

P6.8 Based on the non-hydrostatic solution for the interfacial wave pre-
sented in section 6.2.2, solve the same problem assuming that the
surface waves, represented by a sinusoidal function η(x, t ), propagate
at the water surface.

P6.9 Considering a 10 m deep and 2 km long two-layer stratified lake, with a
epilimnion located approximately 5 m above the water surface, what is
the highest horizontal baroclininc mode (internal seiche) supported by
the lake ? Explain why above this limit we may not expect the formation
of standing internal waves?

P6.10 Assuming a 27 m deep stratified lake of two layers (∆ρ/ρ = 0.0025), in
which the thermocline is 7 m above the surface of the water, find the
Rossby deformation radius. Explain what this value means.



Chapter 7

Internal Wave in Continuous
Stratified Fluid

7.1 Internal Seiche

Oceans, lakes, and reservoirs are often continuously stratified. In these environ-
ments, stratification can be represented by a collection of homogeneous layers,
separated by multiple density jumps (Maas, 2005). Exactly as in a two-layer sys-
tem, discussed in Section 6.2, all density jumps are able to support the evolution
of internal waves, in which each layer will not flow separately. An internal wave
propagating to the right side of the upper layer pushes the lower layer in the same
direction, creating a cascading effect (Hazewinkel, 2010). The wave propagates
obliquely into the system rather than forward along the density interface. In this
case, internal waves can propagate horizontally and vertically along the water
column. Thus, the phase velocity is not necessarily aligned with the group ve-
locity, implying that the wave crests may move upward while its energy modes
downward.

According to Pannard et al. (2011), standing internal waves in closed basins
can be classified by nodal points on the vertical (V) and horizontal (H) compo-
nents, VnHm1, in which n and m are the number of nodes of each component.
Internal waves with higher vertical modes are only excited when the density
stratification patterns promote a higher number of layers with different density
differences. However, even in a continuous stratification condition, the funda-
mental internal wave may be dominant or even be the only mode generated.
The occurrence of higher vertical modes is related, in addition to the unequal
differences in density between layers, resonance with wind forcing () and sloping
topography (). The fundamental internal seiche mode (V1) is characterized by
the epilimnion and hypolimnion layers moving in opposite directions, with shear
concentrated in the pycnocline. The second vertical mode (V2) is associated

1This nomenclature can be presented in different forms. For example, a V3H2 internal wave
is called by Sutherland (2010) as the 2-3 mode. Hutter et al. (2011) call this same internal wave
pattern as vertical mode 3 and horizontal mode 2.

133
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with a change in the thickness of the metalimnion, a strong tilt of the epilimnion
interface, a large shear across the base of the epilimnion, and an undisturbed
hypolimnion.

Second-vertical-mode internal seiches are characterized by the epilimnion
and hypolimnion moving in the same direction, with a balancing flow in the
metalimnion flowing in the opposite direction, creating shear stress at both the
top and bottom of the metalimnion. Although higher vertical modes were rarely
reported until the end of the 18th century, nowadays it is accepted that high
vertical modes are often excited in lentic water bodies. Data from Mortimer
(1971) based exclusively on large lakes concluded that higher vertical modes were
not frequently observed. However, Roget et al. (1997) stated that the formation
of higher vertical modes is more evident in small lakes where the metalinstake
occupies a relatively higher proportion of the total lake depth than in large closed
basins.

Hutter et al. (2011) showed that the second vertical baroclinic modes are
caused not just by diffusive metalimnion but also by the presence of a second
pycnocline. Furthermore, Wiegand, Chamberlain (1987) observed that after a
strong wind event, the first vertical mode generated was typically followed by
excitation and dominance of a second vertical mode baroclinic wave. Boehrer
et al. (2000) reported higher vertical mode due to strong wind events in Lake
Constance, where the V1H1 mode is dominant. Münnich et al. (1992) pointed out
that wind oscillations also contribute to excite higher vertical baroclinc waves.
Although higher internal wave modes have been extensively studied in recent
years, the influence of temperature profiles, mean depth, shape, morphology,
meteorological conditions, and its resonances on the excitation of higher vertical
modes is not yet well understood.

An interesting observation of higher vertical modes is related to the structure
of each baroclinic wave. As shown by Salvadè et al. (1988), the nodal lines of
each baroclinic wave are frequently shifted due to the fact that each baroclinic
mode has different vertical boundaries defined by the shore of the basin. Thus,
different baroclinic modes present different nodal positions. As a result, the effect
of internal waves may be different along the reservoir, depending on the depth of
each layer.

Another interesting observation is that a higher vertical mode normally re-
quires less energy compared to the fundamental baroclinic mode (V1). This can
be interpreted by a process called WKB normalization, an initialism for Wentzel,
Kramers, and Brillouin that was first used for a semi-classical calculation in
quantum mechanics. According to Sutherland (2010), WKB renormalization is a
coordinate change procedure that allows for the transformation of the structure
of internal waves in a uniformly stratified fluid to those in a non-uniformly strati-
fied fluid. Actually, the WKB is an approximate solution to a time-independent
differential equation. This analysis shows that the energy of hydrostatic baro-
clinic modes at any depth is proportional to the Brunt-Väisälä frequency. Thus,
although higher vertical modes present longer periods and higher amplitudes
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compared to fundamental modes, higher modes normally suggest lower internal
wave energy due to the density structure.

Large thermal oscillations at depths much deeper than the pycnocline have
already been observed by Mortimer (1950). This may explain the eddy diffusion
of heat and nutrient content in the benthic boundary layer. The vertical and
horizontal modes are completely independent, internal waves can be generated
with a wide range of modes, and some combinations are shown in Figure 7.1.

Figure 7.1 Schematic view of two types of higher internal wave modes in a
closed basin: a) V2H1 and b) V3H1 with free surface. Black dots represent
nodal points.

7.1.1 Hydrostatic three-layer model

Before creating internal waves in a multilayer system, which allow the formation
of infinite numbers of internal waves with higher vertical mode internal (for
example, the mode V3H1 illustrated in Figure 7.1b), we will demonstrate how we
can extend the solution for a two-layer system, presented in Section 6.2.1, to three
layers (Figure 7.1a).

Basically, the solution is obtained by solving the system of governing equa-
tions for shallow water flow, the same system of equations 6.62. However, differ-
ently from the two-layer cases, s now can vary from 1 to 3.

The pressure distribution in each layer is similar to the pressure distribution
of the two-layer system, which was given by equations 6.65 and 6.66. The only
difference is that now we must define an additional function for the third layer:

P3(x, z, t ) = ρ1g (ζ1 −ζ2)+ρ2g (ζ2 −ζ3)+ρ3g (ζ3 − z) −H ≤ z ≤ ζ3, (7.1)

in which H = H1 +H2 +H3 is the total water depth.
Applying the pressure functions to the momentum equations 6.62a for all the
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three layer, gives

∂u1

∂t
=−g

∂ζ1

∂x
(7.2a)

∂u2

∂t
=−ρ1

ρ2
g
∂ζ1

∂x
− ρ2 −ρ1

ρ2
g
∂ζ2

∂x
(7.2b)

∂u3

∂t
=−ρ1

ρ3
g
∂ζ1

∂x
− ρ2 −ρ1

ρ3
g
∂ζ2

∂x
− ρ3 −ρ2

ρ3
g
∂ζ3

∂x
. (7.2c)

The second equation is derived from the mass conservation equation for
all the three layers (equation 6.62c) can be obtained similarly to found in the
two-layer case (equation 6.69), except now we have three-layers:∫ −h1

0
d
∂ζ

∂t
=−∂u1

∂x

∫ −h1

0
dz (7.3a)∫ −(h1+h2)

−h1

d
∂ζ

∂t
=−∂u2

∂x

∫ −(h1+h2)

−h1

dz (7.3b)∫ −H

−(h1+h2)
d
∂ζ

∂t
=−∂u3

∂x

∫ −H

−(h1+h2)
dz (7.3c)

∂u1

∂x
= 1

h1

(
∂ζ2

∂t
− ∂ζ1

∂t

)
(7.4a)

∂u2

∂x
= 1

h2

(
∂ζ3

∂t
− ∂ζ2

∂t

)
(7.4b)

∂u3

∂x
=− 1

h3

∂ζ3

∂t
(7.4c)

7.1.2 Hydrostatic multi-layer model

Motivated by the case of the three-layer system, we can extend the number of
layers to have a solution for a N − layred system.

Expanding the linearized momentum equation 6.62b to N -layers, we have for
layer i

∂ui

∂t
=− 1

ρi

∂Pi

∂x
, (7.5)

which the subscript i = 1, . . . , N describes each layer of the N -layered multi-layer
system, ui is the horizontal velocity in the layer i , ρi is the density of water in the
layer i , and Pi is the hydrostatic pressure in the layer i .

The hydrostatic pressure Pi is described by

Pi (z, x, t ) = Po + g
i−1∑
j=1

ρ j (ζ j −ζ j+1)

above layer i

+ gρi (ζi − z)
in layer i

, (7.6)
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in which Po is the atmospheric pressure. Note that i is a fixed index (which stays
at i -layer), while j describes the contribution of other layers to the dynamic of
i -layer.

Figure 7.2 Stable N -layer system in a rectangular basin (ρ1 < ρ j < ρN ). The
vertical coordinate is positive above the water surface. H is the thickness of
the equilibrium layer, while h is the thickness of the local layer. ζ describes
interfaces between two fluids with different densities (referenced from
z = 0). The index i indicates the analyzed layer (as an example, we defined
the position of the red dot as our point of interest). The index j represents
all the layers that affect the pressure in the layer i , which are all the layers
above i .

Substitution of equation 7.6 into 7.5 and assuming that Po is constant through-
out the lake give us

∂ui

∂t
=− g

ρi

( i∑
j=1

(ρ j −ρ j−1)
∂ζ j

∂x

)
. (7.7)

in which ρ0 ≈ 0.
The second equation is obtained from the mass conservation. Using the

three-layer case is easy to find a relationship to N layers:

∂ui

∂x
= 1

hi

∂

∂t

(
ζi+1 −ζi

)
, (7.8)

in which when i +1 > N , ζi+1 = 0.
Deriving equation 7.7 in x and equation 7.8 in time and combining both

equations to eliminate horizontal velocity, we find the following equation

∂2

∂t 2

(
ζi+1 −ζi

)
+ g Hi

ρi

i∑
j=1

(
(ρ j −ρ j−1)

∂2ζ j

∂x2

)
, (7.9)

in which depending on the number of layers, a set number of governing equation
will be available to define all solutions.

7.1.3 Continuous stratification non-hydrostatic model

Our first step is to derive the governing equation for non-rotating and non-viscous
shallow water flow. Unlike our previous solution for multi-layer system, presented
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in Section 7.1.2, now we do not apply the governing equation separately for
each layer. Thus, from the conservation equations 6.62a to 6.62c in Cartesian
coordinates, we have the following.

ρ
∂u

∂t
=−∂p

∂x
, (7.10a)

ρ
∂v

∂t
=−∂p

∂y
, (7.10b)

ρ
∂w

∂t
=−∂p

∂z
− gρ, (7.10c)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (7.10d)

in which u = (u, v, w) is the velocity field, p is the pressure, and g is the grav-
itational acceleration. It is important to note that we already have linearized
the governing equations, which assumes just small-amplitude internal waves.
As discussed before, the linearization procedure neglects the non-linear term
from the governing equations by expanding the equation in Taylor’s series and
assuming that wave amplitude is much smaller than the wavelength (a ¿λ). The
linearization procedure can be done formally in a way similar to what we have
done in Section 6.1.1 for surface waves.

First, we can derive the equations 7.10a and 7.10b from x and y , respectively:

ρ
∂

∂x

∂u

∂t
=−∂

2p

∂x2 , (7.11a)

ρ
∂

∂y

∂v

∂t
=−∂

2p

∂y2 , , (7.11b)

assuming that u and v are characterized by a smooth function, we may combine
the equations 7.11a and 7.11b as

ρ
∂

∂t

(
∂u

∂x
+ ∂v

∂y

)
=−

(
∂2p

∂x2 + ∂2p

∂y2

)
. (7.12)

Substitution of the mass conservation equation 7.10d into equation 7.12 and
deriving consecutively in z and time give us

−ρ ∂

∂t

(
∂w

∂z

)
=−

(
∂2p

∂x2 + ∂2p

∂y2

)
.

ρ
∂2

∂t 2

(
∂2w

∂z2

)
= ∂

∂t

∂

∂z

(
∂2p

∂x2 + ∂2p

∂y2

)
. (7.13)

Deriving in time the momentum equation in z-direction, we have

ρ
∂2w

∂t 2 =− ∂

∂t

∂p

∂z
− g

∂ρ

∂t
. (7.14)

Recall that ρ is a function of z only, different from ρ(x, t ). The last term of the
equation 7.14 can be obtained from the mass conservation equation. From the
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Reynolds decomposition, we can split the contribution of fluid density into mean
and perturbation components (%(x, t ) = ρ+ρ), and we find the following.

∂%

∂t
+ui

∂%

∂xi
= 0,

∂ρ

∂t
+ui

∂ρ

∂xi
=−w

∂ρ

∂z
, (7.15)

in which ρ is the density perturbation and ρ is the density in hydrostatic equilib-
rium.

Equation 7.15 can be linearized similarly to that described in Section 6.1.1 for
a surface wave. First, equation 7.15 can be presented in non-dimensional form
using the following transformation variables.

ρ = ∼
ρ ρ∗ ρ = ρo ρ

∗, (7.16a)

ui = a/T u∗
i xi =λx∗

i t = T t∗, (7.16b)

in which T is the wave period, a is the wave amplitude, λ is the wavelength, and
ρo and

∼
ρ are the density of the fluid unperturbed and perturbed, respectively. The

variables denoted by * are dimensionless. Substituting equations 7.16 into 7.15
gives us

∼
ρ

T

∂ρ∗

∂t∗
+ a

∼
ρ

Tλ
u∗

i
∂ρ∗

∂x∗
i

=−aρo

Tλ
w∗ ∂ρ

∗

∂z∗ ,

∂ρ∗

∂t∗
+
�
�
��
a ¿λ

a

λ
u∗

i
∂ρ∗

∂x∗
i

=−a ρo

λ
∼
ρ

w∗ ∂ρ
∗

∂z∗ , (7.17)

in which the term of order O (a/λ) can be neglected for small-amplitude waves
(a/λ). Note that we cannot neglect the last term of 7.18 because even though
a ¿λ, ρo À ∼

ρ.
Considering the linearization procedure and rewriting equation 7.18 in terms

of dimensional variables, we obtain the following.

∂ρ

∂t
=−w

∂ρ

∂z
, (7.18)

Substituting equation 7.18 into 7.14, we have

ρ
∂2w

∂t 2 =− ∂

∂t

∂p

∂z
+ g w

∂ρ

∂z
, (7.19)

Rearranging equation 7.19, we find that

∂2w

∂t 2 −w
g

ρ

∂ρ
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−N 2

=− 1

ρ

∂

∂t

∂p

∂z
, (7.20)

in which N is the buoyancy frequency, defined by 2.15.
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Substituting equation 7.20 into 7.13 gives us

∂2

∂t 2
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∂2w

∂z2

)
= 1

ρ

∂

∂t

∂

∂z
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∂
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∂p
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= 1

ρ

∂

∂t

∂p

∂z︸ ︷︷ ︸
equation 7.20

(
∂2

∂x2 + ∂2

∂y2

)
,

Some manipulations, such as the change in derivative order, are not trivial and
are only possible for a smooth velocity field function. Rearranging this equation,
we may find that

∂2

∂z2

(
∂2w

∂t 2

)
=−

(
∂2w

∂t 2 +N 2w

) (
∂2

∂x2 + ∂2

∂y2

)
,

∂2

∂t 2

∂2w

∂x2
i︸ ︷︷ ︸

total laplacian

+N 2
(
∂2w

∂x2 + ∂2w

∂y2

)
︸ ︷︷ ︸

horizontal laplacian

= 0, (7.21)

in which xi = (x, y, z). When the system is unstratified (N = 0), the laplacian
∇2w = 0 (irrotational motion), which indicates the formation of surface gravity
waves only.

Taking into account only the x-z plane, we can obtain the bidimensional form
of the internal wave equation (Equation 7.21)

∂2

∂t 2

∂2w

∂x2
i

+N 2 ∂
2w

∂x2 = 0. (7.22)

Internal wave equation

Table 7.1 Non-Boussinesq internal
wave.

The general solution of 7.22 can have the form of a plane wave.

w(x, z, t ) =W (z) e−i (kx−ωt ), (7.23)

in which w is the vertical velocity, k is the waver number in x-direction, and
ω is the wave frequency. The solution of the three-dimensional equation can
have a different wave number for all directions x, y , and z. Furthermore, it is
important to note that the solution is a composition of several components of
various frequencies ω j .

Substitution of the general solution 7.23 into equation 7.22 leads to the ordi-
nary differential equation of the internal wave, also known as modified Taylor-
Goldstein equation:

∂2

∂t 2

(
∂2w

∂x2 + ∂2w

∂z2

)
+N 2 ∂

2w

∂x2 = 0
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∂2

∂t 2

(
i 2 k2W (z) e−i (kx−ωt ) + ∂2W

∂z2 e−i (kx−ωt )
)
+N 2i 2k2W (z) e−i (kx−ωt ) = 0

−k2W (z) i 2ω2 + i 2ω2 ∂
2W

∂z2 −N 2k2W (z) = 0

k2W (z)− ∂2W

∂z2 − N 2

ω2 k2W (z) = 0

∂2W

∂z2 +
(

N 2

ω2 −1

)
k2W (z) = 0

∂2W

∂z2 +
(

N 2 −ω2

ω2

)
k2W (z) = 0. (7.24)

Taking into account the boundary condition in the vertical direction,

w(x, z = 0, t ) =W (z = 0) e−i (kx−ωt ) = 0 W (z = 0) = 0, (7.25a)

w(x, z =−H , t ) =W (z =−H) e−i (kx−ωt ) = 0 W (z =−H) = 0, (7.25b)

and combining with equation 7.24, the differential equation results in a Sturm-
Liouville problem, similar to the solution for the hydrostatic multi-layer system,
equation 7.9. For some special cases, equation 7.24 has an analytical solution;
however, for an arbitrary N 2 profile, the solution should be found numerically.

In both equations, the solution is formed by a set of eigenvalues kn and
eigenfunctions Wn . The eigenfunctions Wn of the Sturm-Liouville system, corre-
sponding to different eigenvalues kn , in which W ′

n ’s must be orthogonal to each
other: ∫ 0

−H
W1(z) W2(z) dz = 0. (7.26)

Orthogonality

To prove the orthogonality, we may consider two different solutions of equation
7.24:

∂2W j

∂z2 +
( N 2 −ω2

j

ω2
j

)
k2W j = 0. (7.27)

Multiplying the equation 7.27 by Wi and integrating into z-direction along
the water column gives us

∫ 0

−H

∂2W j

∂z2 Wi dz︸ ︷︷ ︸
integration by parts

+
∫ 0

−H

( N 2 −ω2
j

ω2
j

)
k2 W j Wi dz = 0. (7.28)
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The first term on the left-hand side of equation 7.28 can be rearranged by
integration by parts and assuming boundary conditions 7.25:∫ 0

−H

∂2W j

∂z2 Wi dz = ∂W j

∂z
Wi

∣∣∣∣0

−H
−

∫ 0

−H

∂W j

∂z

∂Wi

∂z
dz

=
�
��

�
��*

= 0
∂W j

∂z
Wi

∣∣∣∣0

−H
−

(
�
��

�
��*

= 0

W j
∂Wi

∂z

∣∣∣∣0

−H
−

∫ 0

−H
W j

∂2Wi

∂z2 dz

)
∫ 0

−H

∂2W j

∂z2 Wi dz =
∫ 0

−H
W j

∂2Wi

∂z2 dz

Substituting into the equation 7.28, we have

∫ 0

−H
W j

∂2Wi

∂z2 dz +
∫ 0

−H

( N 2 −ω2
j

ω2
j

)
k2 W j Wi dz = 0. (7.29)

Similarly, we can change the indexes i to j and vice versa, leading to∫ 0

−H
Wi

∂2W j

∂z2 dz +
∫ 0

−H

( N 2 −ω2
i

ω2
i

)
k2 Wi W j dz = 0. (7.30)

Subtracting equation 7.29 from equation 7.30, we get∫ 0

−H

(
N 2

ω2
j

− N 2

ω2
i

)
k2Wi W j dz = 0,

(
1

ω2
j

− 1

ω2
i

)
k2

∫ 0

−H
N 2 Wi W j︸ ︷︷ ︸

orthogonal

dz = 0, (7.31)

which indicates an orthogonality relation modulated by the buoyancy frequency
N (z), which can be included in the eigenvectors Wn .

Internal wave modes and orthogonal decomposition

Boundary condition
Note that the solution of the verti-
cal velocity converges to zero for
each mode at the bottom bound-
ary. However, because of the dis-
crete value of the wave period, the
solution does not exactly match
the zero condition. Thus, one ap-
proach is to find the place where
the solution at the bottom crosses
the y-axis.

Table 7.2 Numerical approach.

The internal wave modes provide a valuable tool for describing the energy content
of each mode, which may help to describe the vertical and horizontal structure of
the response of lakes to wind forcing. The solution of 7.24 describes the nature
of the oscillatory motion in water flow. From the velocity profiles, the solution
decomposes the profile into normal modes, providing vertical and horizontal
velocity profiles associated with different vertical baroclinic modes. The decom-
position is defined by the projection of the point onto the coordinate axis in the
space in which the vertical velocity at the boundary conditions for all vertical
modes is equal to zero.
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To find the numerical solution of W , we first discretize the differential equa-
tion 7.24,

Wi −2Wi−1 +Wi−2

∆z2 +k2
( N 2

i−1

ω2 −1

)
Wi−1 = 0

Wi =−Wi−2 +
(
2−∆z2k2

( N 2
i−1

ω2 −1

))
Wi−1 = 0, (7.32)

in which ∆z is the vertical resolution of the model, k = 2π/λ is the wave number,
N is the buoyancy frequency, and ω= 2π/T is the angular frequency of the wave,
where λ and T are the wavelength and wave period, respectively.

To find the solution of equation 7.32 for each vertical mode, we must consider
the initial and boundary conditions 7.25a (Wz=0 = 0). For a first approximation,
we assume Wz=∆z = 1 and a small internal wave period.

As the solution progresses to the next iteration step based on the increase
in the wave period, the profile of W becomes closer to the solution. The final
solution of the first mode is obtained when the last value of W satisfies the
boundary condition at the bottom 7.25b, in which Wz=−H = 0 (Figure 7.3).

Figure 7.3 Steps to obtain the
numerical solution for the fun-
damental vertical mode. The
solution indicates a period of
125 hours for the first vertical
mode.

After finding the solution for the first mode, the solution is recalculated to
compute the solution for the second mode. The value at the bottom boundary
converges again to zero after more iterations, approximating the vertical velocity
profile from the first to the second mode (Figure 7.5). This procedure is repeated
to find higher vertical modes.

Using the mass conservation equation 7.10d, we can also estimate the hori-
zontal component in arbitrary units. Note that at the wave node, the horizontal
velocity is higher than the vertical component. Figure 7.4 illustrates the velocity
pattern for each mode and component.

Figure 7.4 Solutions of the Taylor-Goldstein equation for a temperature
profile. a) Present the temperature and buoyancy frequency estimated
from the temperature profile. The numerical solution of internal seiches
obtained from 7.24 for each mode normalized by the maximum velocity for
each component is presented in b), c), and d). The light and dark blue lines
represent the vertical and horizontal components of the velocity, respec-
tively. Each graph shows the solution for a determined vertical mode: b)
first mode (TV1H1 = 126.4 h), c) second mode (TV2H1 = 337.0 h), and d) third
mode (TV3H1 = 539.2 h)
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To obtain a fair relation between the existing modes, we should orthogonalize
the solution through a normalization to obtain the weighted modes. The normal-
ization of W is performed by taking the square root of the orthogonality relation,
which was found in equation 7.31:

w = W

wnorm
= Wp

W N 2 W T
, (7.33)

in which W T represents the transpose of W (z,m), which is a function of the
vertical axis z pointing to the lake bottom and the vertical mode m. Note from
Equation 7.34 that normalization wnorm(m) is a function only of the mode.

Figure 7.5 Steps to obtain the nu-
merical solution for the second
vertical mode. The solution indi-
cates a period of 334.2 hours for
the second vertical mode.

To obtain the arbitrary horizontal component of the horizontal velocity, we
must consider the bidimensional form of the mass conservation equation 7.10d,
which gives us the following:

u = Wz+1 −Wz

wnorm
. (7.34)

Note that Equation 7.34 does not yet provide the horizontal velocity profile for
each vertical mode. To decompose a velocity profile into different vertical modes,
we must combine the integration of the original horizontal velocity profile with
the weighted normal eigenvectors, as explained in Table 7.3. This procedure is
described by Boehrer et al. (2000) for Lake Constance.

Interwave Analyzer
The software processes only tem-
perature data, but is coupled to
the internal wave model that esti-
mates the weighted normal eigen-
vectors for the horizontal profile,
helping to calculate mode decom-
position. Based on results from
the Taylor-Goldstein equation, a
simple convolution between the
eigenvectors and the integration
of the original horizontal velocity
profile gives the horizontal veloc-
ity profile associated with each
vertical mode:

um
z =∑(

WintN 2wuT
)
, (7.35)

in which uT represents the trans-
pose of u, and Wint is the "mea-
sured" integrated horizontal veloc-
ity.

Table 7.3 Interwave Analyzer and
mode decomposition.

This method has been extended to the variable bottom cases for multilayer
stratification (Shimizu, 2011) and for continuous stratification (Shimizu, 2019).
Studies have applied this model to compute the total energy of each vertical mode
for internal seiches generated in a rectangular-shaped box tank with flat bottom
(). For the cases of variable bottoms, Imam et al. (2020) has studied the energy
assigned to different vertical modes through an extended version of the modal
decomposition (Shimizu, 2011).
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Figure 7.6 Mode decomposition Numerical solution of internal seiches
obtained from equation 7.24 for each mode normalized by the maximum
velocity for each component. The light and dark blue lines represent the
vertical and horizontal components of the velocity, respectively. Each graph
shows the solution for a determined vertical mode: a) first mode (TV1H1 =
126.4 h), a) second mode (TV2H1 = 337.0 h), and a) third mode (TV3H1 =
539.2 h)

Dispersion relation

From equation 7.22 and considering the insert wave of the form:

w = woe−i (Kx x+kz z−ωt ), (7.36)

yields the dispersion relation:

∂2

∂t 2

(
∂2w

∂x2 + ∂2w

∂z2

)
+N 2 ∂

2w

∂x2 = 0.

−
(
k2

x +k2
z

)
∂2

∂t 2

(
woe−i (Kx x+kz z−ωt )

)
−N 2 k2

x woe−i (Kx x+kz z−ωt ) = 0(
k2

x +k2
z

)
ω2 woe−i (Kx x+kz z−ωt ) −N 2 k2

x woe−i (Kx x+kz z−ωt ) = 0(
k2

x +k2
z

)
ω2 −N 2 k2

x = 0

ω2 = N 2 k2
x

k2
x +k2

z
(7.37)

Figure 7.7 Components of the
wave number.

Rearranging equation 7.37, we may find

ω

N
=

√
k2

x

k2
x +k2

z
= kx

k
= cosα, (7.38)
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in which k is the resultant wavenumber and α is the angle between the resultant
wavenumber and x-component (Figure 7.7).

Equation 7.38 states that ω/N varies between 0 and 1, implying that the
excitation frequency ω must be less than or equal to the buoyancy frequency N .
This relation indicates that internal waves cannot exist when ω> N , since density
stratification cannot support the forcing frequency ω, which breaks stratification
right after the initialization of the perturbation.

Three-dimensional form
The dispersion relation obtained
for a two-dimensional case can
be easily obtained for a three-
dimensional case, assuming a
wavenumber k = (kx ,ky ,kz ). In
this case, the wave would have the
form:

w = wo e−i (Kx x+Ky y+kz z−ωt ),

which yields the dispersion rela-
tion

ω2 = N 2
k2

x +k2
y

k2
x +k2

y +k2
z

(7.39)

Table 7.4 Wave in a stratification
(3D).

From the two-dimensional form of the mass conservation equation 7.10d and
assuming the general solution of a plane wave (equation 7.36), we may find the
horizontal components u of the velocity vector:

u =−
∫
∂w

∂z
dx = i wo kz

∫
e−i (Kx x+Ky y+kz z−ωt ) dx

u =−wo
kz

kx
e−i (Kx x+Ky y+kz z−ωt ), (7.40)

in which the vertical component w is defined by the general solution (equation
7.36).

Finally, the vector velocity may be defined as

v(u, w) = wo e−i (Kx x+Ky y+kz z−ωt )
(
− kz

kx
,1

)

v(u, w) = kz wo e−i (Kx x+Ky y+kz z−ωt )
(
− 1

kx
,

1

kz

)
(7.41)

Phase and group velocity

Phase velocity can be calculated from the dispersion relation 7.38

cp = ω

|k|
k

|k| =
N kx√
k2

x +k2
z

k

|k| |k| ,

cp = N kx√
k2

x +k2
z

1√
k2

x +k2
z

1√
k2

x +k2
z

(
kx ,kz

)
,

cp = N kx

(k2
x +k2

z )3/2

(
kx ,kz

)
. (7.42)

Rearranging equation 7.42, we may find

cp = N k2
x kz

(k2
x +k2

z )3/2

(
1

kz
,

1

kx

)
. (7.43)

The group velocity is defined as:

cg =
(
∂ω

∂kx
,
∂ω

∂kz

)
, (7.44)
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in which ω= N kx (k2
x +k2

z )−1/2 (equation 7.38).
The horizontal component of the group velocity can be found by substituting

equation 7.38 into 7.44:

cx
g = ∂ω

∂kx
= N

(
(k2

x +k2
z )−1/2 −k2

x (k2
x +k2

z )−3/2
)
,

cx
g = N (k2

x +k2
z )−3/2

(
(k2

x +k2
z )−1/2

(k2
x +k2

z )−3/2
−k2

x

)
,

cx
g = N (k2

x +k2
z )−3/2 k2

z . (7.45)

The vertical component of the group velocity may be found in a similar way.

cz
g = ∂ω

∂kz
=−N kx

2
(k2

x +k2
z )−3/2 (−2kz )

cz
g =−N (k2

x +k2
z )−3/2 kx kz . (7.46)

Substituting equations 7.45 and 7.45 into 7.44 gives the following

cg = N kz (k2
x +k2

z )−3/2
(
kz ,−kx

)
. (7.47)

Rearranging equation 7.47 to have the same form of phase velocity (Equation
7.43), we obtain the following.

cg = N k2
z (k2

x +k2
z )−3/2

(
1,−kx

kz

)

cg = N k2
z kx (k2

x +k2
z )−3/2

(
1

kx
,− 1

kz

)
. (7.48)

Considering that two vectors are perpendicular when their dot product equals
zero, from equations 7.43 and 7.48 we can easily demonstrate that the phase
velocity is perpendicular to the group velocity:

N 2 k3
z k3

x

(k2
x +k2

z )3

(
1

kx kz
− 1

kz kx︸ ︷︷ ︸
=0

)
= 0. (7.49)

Internal wave attractor

From the tendency of the internal wave energy to propagate vertically along
the water column, the internal wave rays may converge in a confined stratified
basin to trajectories called wave attractors (Fig. ??). To examine the formation
of internal wave beams and wave attractors, scientists have performed a classic
laboratory experiment on the generation of internal waves from a vertically os-
cillating cylinder in a continuous density stratified fluid (Mowbray, Rarity, 1967;
Sutherland et al., 2014; Sutherland, Linden, 2002). To visualize the internal wave
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beams, scientists often have employed a non-intrusive technique called synthetic
schlieren. This technique is a non-intrusive method based on density refraction
and has been used to investigate the hydrodynamics of stratified flows (ref). This
technique has been described in detail in chapter (ref).

As the cylinder moves up and down, four beams are formed around the
cylinder, two propagating upward and two downward (Fig. ??). The energy
propagates along the wave beam, while the phase velocity moves perpendicular
to the energy direction, verifying the orthogonality of the group and the phase
velocity demonstrated mathematically by Equation 7.49. Note that the angle
between the resultant wavenumber k and x-component kx is our α defined in
Equation 7.38.

As the wave beam propagates vertically along the water column, the beams
propagating upward are susceptible to be absorbed at the free surface. The ones
propagating downward are susceptible to reflect

Although these experiments do not provide a complete picture to describe
the internal waves generated over topography, the experiments provide a use-
ful starting point for investigating the interaction between internal waves and
boundary layers.

7.2 Lake mixing

Generation of turbulence
The generation of turbulence is
proportional to the shear velocity
of the wind u∗ (mechanical stir-
ring), which is a function of the
speed of the wind and the rough-
ness of the surface of the water,
and convective overturns (convec-
tive stirring), which can be defined
as

u f =−
(
αgQhsbl

ρsblCp

)1/3
,

in which α is the thermal com-
pressibility of water, g is the ac-
celeration of gravity, hsbl = H1 is
the thickness of the upper well-
mixed layer, Q is the net heat flux
with the atmosphere, ρsbl is the
density of water in the well-mixed
layer, and Cp is the specific heat
of the water. Finally, the turbulent
velocity scale can be defined as

q3 ∝ η3 u3∗+u3
f , (7.50)

in which η is a coefficient of order
unity.

Table 7.5 turbulent velocity scale.

Although wind speed contributes to the formation of higher amplitude internal
seiches, as evidenced by the equation 6.114, the dynamics of lakes has more
complex mechanisms that should be considered when we want to describe the
dominance of internal seiche activity. Time scales of different mechanisms, such
as wave damping and thermocline erosion due to mixing, can be evaluated to
describe different lake regimes (Spigel, Imberger, 1980).

7.2.1 Internal seiche

In the absence of entrainment and considering that only internal seiche can in-
fluence the motion of thermally stratified lakes, a model similar to that described
in Section 6.2.5 can be used to obtain the time scale associated with the motion
of internal seiche.

The model is based on an idealized rectangular two-layer box tank (Figure
6.22), in which a surface stress applied in the upper layer is exerted by a con-
stant wind stress (u∗). Integrating in time the governing equations of motion
6.102a described in Section 6.2.5 and considering that the vertical displacement
is negligible in the center of the basin η= 0:

u1(t ) = u2∗ t

H1
. (7.51)

However, note that the upper layer does not accelerate infinitely during the
wind event, and the increase in velocity u1 in the center of the lake is limited
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by the extension of the lake. As the wave propagates toward the center of the
lake, the upper layer accelerates until t = TV1H1/4 (Figure 7.11), when the velocity
associated with the wave motion is maximum:

umax
1 (t = TV1H1/4) = u2∗ TV1H1

4H1
. (7.52)

After this moment, the pressure gradient increases as a result of the presence
of the end wall, decelerating the upper layer. As the wave propagates back and
forth, the shear is not completely cut off at t = TV1H1/4.

7.2.2 internal wave damping

Another limiting factor for internal seiche formation is the time-scale of wave
damping, which describes the time spent for the internal seiche energy to be
completely dissipated. Heaps, Ramsbottom (1966) suggested that the wave would
be damped mainly due to shear stress at the bottom of the lake. However, recent
observations also demonstrate that internal seiches are susceptible to degenerate
into higher-frequency internal waves(Boegman et al., 2005a; Horn et al., 2001)
and break at sloping boundaries and irregularities ?. For simplicity, we assume
here that the internal wave is only dampened by bottom shear. Thus, internal
seiche wave damping can be estimated through the balance between the wave
energy (Eq. 6.91) and the energy dissipated on solid boundaries. Assuming a
rectangular-shaped basin, the energy dissipated at solid boundaries is given by
(Horn et al., 2001):

dEbot

dt
=−

∫
A1

µ u2
1

2 δb
dA︸ ︷︷ ︸

surface shear

−
∫

A2

µ u2
2

2 δb
dA︸ ︷︷ ︸

bottom shear

−
∫

Aρ

µ ∆u2

2 δρ
dA︸ ︷︷ ︸

interfacial shear

, (7.53)

in which µ is the kinetic viscosity, u is the horizontal velocity, δb is the thickness
of the laminar boundary layer, δρ is the thickness of the interfacial layer, and A is
the surface area in which shear occurs (Figure 7.8). Note that in this model, we
neglected the shear that occurs in the end wall of the tank and also assumed a
two-layer rig-lid model, in which the surface is closed and made with the same
material of the tank bottom, indicating that the thickness of the laminar boundary
layer is the same for surface and bottom shear. Another simplification is that µ is
a mean kinematic viscosity and does not differentiate from the upper and lower
fluids.
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Figure 7.8 Schematic illustration of the rectangular tank and surface areas
where shear occurs

Applying the surface areas A to equation 7.53 and rearranging the result, we
find the following

dEbot

dt
=− µ

2δb

(
(2H1 +B)

∫
x=L

u1(x)2 dx+

(2H2 +B)
∫

x=L
u2(x)2 dx

)
− µB

2δρ

∫
x=L

∆u(x)2 dx, (7.54)

in which the horizontal velocity profile of each layer can be approximated by a
linear variation along the longitudinal extension (Figure 7.9).

Figure 7.9 Velocity of each layer
in t = TV 1/2 along the longitudi-
nal extension of the rectangular-
shaped box.

As we cannot mathematically represent the velocity profile continuously
along the basin length, we may assume that the energy is equally partitioned
between both sides of the rectangular-shaped box, computing only the energy
for one side of the basin and duplicating the final solution. Thus, we have the
following:

dEbot

dt
=− µ

δb

(
(2H1 +B)

∫
x=L/2

4u2
1

L2 x2 dx+

(2H2 +B)
∫

x=L/2

4u2
2

L2 x2 dx

)
− µB

δρ

∫
x=L/2

4∆u2

L2 x2 dx. (7.55)

Integrating 7.55 along the longitudinal direction of the rectangular-shaped
box, we find

dEbot

dt
=− 4µ

δbL2

(
(2H1 +B)+ (2H2 +B)

)
x3

3

∣∣∣∣
x=L/2

− 4µB∆u2

δρL2

x3

3

∣∣∣∣
x=L/2

,

dEbot

dt
=− µL

6δb

(
u2

1(2H1 +B)+u2
2(2H2 +B)

)
− µB∆u2L

6δρ
. (7.56)

Applying the mass conservation into 7.56, give us

dEbot

dt
=− µL

6δb

(
H 2

2

H 2
1

(2H1 +B)+ (2H2 +B)

)
− µB∆u2L

6δρ
, (7.57)
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which describes the rate of energy decay due to shear stress at solid boundaries.
Integrating this equation along one wave period gives a loss of energy during a
single complete oscillation.

The total kinetic energy (equation 6.91) along the upper and lower layers is
defined as

EK = 1

T

∫ T

0

∫
x=L

(∫
z=H1

ρ u1(x)2

2
dz +

∫
z=H2

ρ u2(x)2

2
dz

)
dx B dt , (7.58)

in which T is the fundamental internal seiche period, ρ is the mean density of
water, B is the width of the basin, and u1 and u2 are the velocities of the upper
and lower layers, respectively.

Assuming that the horizontal velocity profile along the extension of the basin
can be approximated by a linear function between x = 0 and x = L/2 (Figure 7.9)
and that the energy is equally partitioned between the sides of the basin, equation
7.58 can be rewritten as

EK = 2
∫

x=L/2

(
ρ H1

2

(
2 x u1

L

)2

+ ρ H2

2

(
2 x u2

L

)2)
dx B ,

EK = 4ρ

L2

(
H1 u2

1 +H2 u2
2

)
x3

3

∣∣∣∣
x=L/2

B ,

EK = ρ L B

6

(
H1 u2

1 +H2 u2
2

)
. (7.59)

Applying the mass conservation equation to 7.59, we find that

EK = ρ L B u2
2

6

H2

H1
H , (7.60)

where H is the total water depth.
Balancing the energy dissipation in the solid boundaries during a single com-

plete oscillation (Equation 7.57) and the energy locked in the internal seiche
motion (Equation 7.60), we have

dEbot

EK
=

(
− µLTV1H1u2

2

6δb

(
H 2

2

H 2
1

(2H1 +B)+ (2H2 +B)

)
− µB∆u2LTV1H1

6δρ

)(
6

ρ L B u2
2

H1

H H2

)
, (7.61)

in which 7.57 was first integrated in time along a wave period.
Rearranging 7.61 gives us

dEbot

EK
=−νTV1H1

Bδb

H1

H H2

(
H 2

2

H 2
1

(2H1 +B)+ (2H2 +B)

)
− νTV1H1

δρ

∆u2

u2
2︸ ︷︷ ︸

(A)

H1

H H2
, (7.62)
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where the term (A), considering the mass conservation law, is defined as

∆u2

u2
2

= 1−2
u1

u2
+

(
u1

u2

)2

=
(

H

H1

)2

Rearranging 7.62 and assuming that the thickness of the laminar boundary
layer is oscillatory, defined by δb =p

ν TV1H1/π, we find

dEbot

EK
=−π δb

∀
(
2HL+B

(
H1

H2
+ H2

H1

))
− νTV1H1

δρ

H

H1 H2
, (7.63)

in which ∀= L H B is the volume of the rectangular-shaped box. Equation 7.63
is similar to that developed by Horn et al. (2001), which apparently assumed
H1 ≈ H2. Note that, different from Horn et al. (2001), we kept the minus sign on
equation 7.63 to demonstrate that the wave energy decays with time (E2 −E1 < 1)

Energy dissipation
Another way of estimating the
kinetic energy dissipated in the
bottom boundary layer has been
proposed by Gloor et al. (2000):

∂EK

∂t
=−ch ρo Ao |uh |3, (7.64)

in which Ao is the interior surface
area of the basin, and ch and uh
are the drag coefficient and the
horizontal velocity at h meters
above the bottom, respectively.
Many authors have estimated the
drag coefficient for different lakes
(Ravens et al., 2000) by compar-
ing the dissipation of turbulent
energy near the bottom boundary
layer with the cubed horizontal
velocity at the same location (Fig.
??). Observations on Lake Baikal
estimated values of c1 m = 2 10−3

(Ravens et al., 2000), while values
in a lake ....

Table 7.6 Dissipation based on
drag coefficient

To determine the damping timescale for field data, studies recommend an
alternative form of equation 7.63 Horn et al. (2001), in which the interfacial shear
effect is neglected and the first term of equation 7.63 is counterbalanced:

dEbot

EK
≈−δb Asolid

∀ , (7.65)

in which Asolid = A1 + A2 is the total area of the solid boundary (Figure 7.8). Since
the horizontal extension of the lake is much greater than its vertical extension,
the solid boundary area Asolid can be approximated to the surface area of the lake
Ao (Spigel, Imberger, 1980). The δb can be approximated by

δ= Umax
p

TV1H1 e

471
p
ν

, (7.66)

where Umax is the maximum velocity due to oscillatory motions, ν is the kinetic
molecular viscosity, e is the sand grain roughness (e.g., for a smooth river channel,
e = 6 mm).

Comparing equation 7.65 with the ratio of time scales, we obtain the time
scale for wave damping:

dEBBL

EK
= TV 1H1

Tdamp

TV 1H1

Tdamp
= ρo Ao u2δ

2

(
2

ρo ∀ u2

)
Tdamp = ∀

Ao δb
TV1H1, (7.67)

where Tdamp represents the time in which all wave energy is dissipated through
the bottom friction. Note that equation 7.67 can also be obtained through equa-
tion7.65, which results in a different equation based on the thickness of the
turbulent oscillatory boundary layer (equation 7.66).
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When Tdamp is less than the period spent on internal seiche formation (Tdamp <
TV 1H1/4), the internal seiche is damped before complete vertical displacement,
and consequently the internal seiche is not generated.

Note that the condition described by equation 7.67 considers only the dis-
sipation due to the bottom friction. However, as mentioned earlier, energy can
be dissipated from the internal seiche as a result of wave breaking and degener-
ation mechanisms. For more information on the internal seiche degeneration
mechanism, see Section 7.5. In Figure 7.10 we present a summary of all regimes
discussed in this section.

Figure 7.10 Regime of lake mixing as a function of Wedderburn number W .

7.2.3 Entrainment

During the evolution of internal seiches and with the damping mechanism, the
well-mixed surface layer erodes to the bottom of the basin; this phenomenon
is called deepening and can contribute to inhibiting the formation of internal
seiches. This mechanism occurs primarily as a result of the shear and stirring
effect. The stirring mechanism contributes to the production of the kinetic energy
of turbulence in the surface boundary layer due to wave break and surface cooling
(Wells, Sherman, 2001). The shear mechanism occurs at the interface between
both fluids as a result of the interaction between the mean large flow and Reynolds
stresses, which favors the production of turbulent kinetic energy. This mechanism
occurs during the evolution of the internal wave as a result of shear in the interface
region.

Figure 7.11 Velocity of the upper
layer in the center of the basin. u∗

1
describes equation 7.51 for the pe-
riod in which the equation is not
valid due to the presence of end
walls. The lower figure illustrates
the interfacial displacement ζ at
the bottom end of the basin dur-
ing the same period of analysis.

To evaluate the deepening of the mixed surface layer, the turbulent kinetic
energy (TKE) equation can be integrated throughout the well-mixed upper layer
(Niiler, 1975; Spigel, Imberger, 1980; Sherman et al., 1978). The TKE budget in the
thermocline region is characterized by the balance of the energy rate required to
erode the mixed surface layer with the energy rate available for mixing, which
includes the energy coming from the surface boundary layer (Qst) and shear
production in the thermocline due to the formation and evolution of internal
seiches (Qsh), in which the shear flow can become unstable and turbulent (Gloor
et al., 2000). At the same time, TKE is lost by the radiation of internal waves (Qiw).
In other words, part of the TKE is used to generate high-frequency waves at the
base of the thermocline.

The energy rate available for mixing is illustrated in Figure 7.12 and is mathe-
matically represented by Niiler (1975) and Sherman et al. (1978) as

∂E

∂t
= CK q3

2︸ ︷︷ ︸
Qst

+ CS (u ·u)

2

dH1

dt︸ ︷︷ ︸
Qsh

− CL a2 N 3 H1

2︸ ︷︷ ︸
Qiw

, (7.68)

in which CK and CS are constants that represent the convective stirring efficiency
and the non-equilibrium effect due to changes in turbulence input, respectively.
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Both constants have the order O (1). H1 is the thickness of the epilimnion, N is
the buoyancy frequency, u is the vector of the mean velocity, q is the turbulent
velocity scale, defined in Table 7.5, and a is the amplitude of the internal wave,
which has been estimated by Sherman et al. (1978) as follows:

a = q2

q N + g∆τα
, (7.69)

where∆τ is the increase in temperature on the interface front andα is the thermal
compressibility of the water.

From Equation 7.69, the leakage of energy due to the excitation of high-
frequency internal waves can be rewritten as

Qiw = CL N 3 H1 q4

2(q N + g∆τα)2 . (7.70)

Multiplying both sides of equation 7.70 by H 2
1 /q4 and assuming that RS =

N H1/q and Ri = g ∆τ α H1/q2, we finally find that

Qiw = CL N 3 H 3
1 q4

2 (q2 N 2 H 2
1 +2 N q g ∆τ α H 2

1 + g 2∆τ2α2 H 2
1 )

,

= CL N 3 H 3
1

2

(
N 2 H 2

1 /q2 +2 N q g ∆τ α H 2
1 /q4 + g 2∆τ2α2 H 2

1 /q4

) ,

= CL N 3 H 3
1

2

(
N H1/q + g ∆τ α H1/q2

)2 ,

Qiw = CL q3 R3
S

2(RS +Ri )2 . (7.71)

Figure 7.12 Schematic of turbu-
lent energy flux path assumed the
model proposed by Sherman et al.
(1978).

Finally, equation 7.68 can be rewritten as

∂E

∂t
= CK q3

2
+ CS (u ·u)

2

dH1

dt
− CL q3 R3

S

2(RS +Ri )2 . (7.72)

Equation 7.72 is balanced by the rate of energy required for deepening:

CT q2

2

dH1

dt︸ ︷︷ ︸
(I)

+ ∆τ α g H1

2

dH1

dt︸ ︷︷ ︸
(II)

=Qst +Qsh −Qiw, (7.73)

in which term (I) represents the rate of change of TKE in the water column and
the second term (II) indicates the contribution of buoyancy. The first term can
be neglected in most cases in lakes, since the energy required for the deepening
mechanism is most of the time controlled by buoyancy (Spigel, Imberger, 1980).
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Substituting equations 7.73 into equation 7.72 gives the following equation:

1

2

dH1

dt
(CT q2 +∆τ α g H1) = CK q3

2
+ CS (u ·u)

2

dH1

dt
− CL q3 R3

S

2(RS +Ri )2 ,

1

q3

dH1

dt
(CT q2 +∆τ α g H1 −CS (u ·u)) =CK − CL R3

S

(RS +Ri )2 ,

1

q

dH1

dt

(
CT + ∆τ α g H1

q2︸ ︷︷ ︸
Ri

−CS (u ·u)

q2

)
=CK − CL R3

S

(RS +Ri )2 . (7.74)

Assuming that u is the shear velocity between layers and ∆τ α g H1 = g ′ H1,
equation 7.74 can be rewritten as

1

q

dH1

dt

(
CT +Ri −CS Ri

∆U 2

g ′ H1

)
=CK − CL R3

S

(RS +Ri )2 ,

1

q

dH1

dt
= CK −CL R3

S/(RS +Ri )2

CT +Ri −CS Ri ∆U 2/(g ′ H1)
, (7.75)

in which ∆U is the velocity jump across the interface front. Most of the time ∆U
can be approximated by the velocity of the upper well-mixed layer (u1).

Equation 7.75 describes the speed of entrainment. Note that the higher the
Richardson number, the slower the entrainment velocity in most cases. Shear
production also contributes to the entrainment velocity by increasing the turbu-
lent kinetic energy at the thermocline interface. This production is balanced by
the change in TKE and the buoyancy effect. Furthermore, the energy available as
a result of stirring, which speeds up the entrainment velocity, is counterbalanced
by the losses of TKE as a result of radiation of the internal wave, which slows down
the entrainment velocity. However, studies have suggested that the loss of TKE
due to internal wave radiation can already be incorporated into the coefficient
CK , which is characterized by the energy that reaches the thermocline region
(Spigel, Imberger, 1980). Assuming this simplification, Equation 7.75 is reduced
to

vent

u∗
= CK

CT +Ri −CS Ri ∆U 2/(g ′H1)
. (7.76)

Note that in equation 7.76, we also approximated the turbulent velocity scale
q to the wind shear velocity u∗, neglecting the contribution of convective stirring
(Table 7.5). Furthermore, the velocity entrainment, which was represented in
equation 7.75 by the time derivative of the thickness of the epilimnion, in equation
7.76 is simply defined as vent.

Figure 7.13 Entrainment velocity
predicted by equation 7.75.

For a small Richardson number (Ri ), the entrainment velocity can be approx-
imated to

vent = CK u∗
CT

. (7.77)

Since the coefficients CK /CT are of order unity, vent ≈ u∗. Many studies have
been conducted to predict the exact value of CK and CT . Observations have
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suggested that CK can vary from 0.13 to 1.0 (Niiler, 1975; Mahrt, Lenschow, 1976;
List et al., 1979), while the coefficient CT is equal to zero for most observations
in lakes with a large Ri number (Niiler, 1975; Mahrt, Lenschow, 1976; Imberger
et al., 1978). However, for most lakes with a low Ri , CT is roughly 0.5.

For a large Richardson number (Ri À 1), which is a common condition ob-
served in lakes and reservoirs, the entrainment velocity is given by

vent

u∗
= CK

Ri −CS Ri ∆U 2/(g ′H1)
, (7.78)

where the second term of the denominator indicates the contribution of shear
stress to the deepening mechanism due to the production of turbulent kinetic
energy. Shear stress is limited by two mechanisms. The first is related to the finite
extension of the lake, whilst the second is related to the entrainment mechanism
itself, which is counterbalanced by the stability condition of the system (see the
denominator term of equation 7.78).

The first mechanism dominates the shear velocity when the internal seiche is
reflected on the end wall of the basin. In this scenario, the horizontal velocity in
the center of the lake is slowed, significantly reducing the shear velocity. Exactly
as discussed above and illustrated in Figure 7.11.

To evaluate the contribution of the finite extension of the lake, we may con-
sider momentum conservation for the upper layer (equation 6.102a) and neglect
surface displacement, since the analyzed position is defined at the node of the
wave:

∂u1

∂t
≈ u2∗

H1
. (7.79)

Froude number
The condition prescribed by equa-
tion 7.86 can also be interpreted
using the concept of the Froude
number. Assuming that Ubasin is
defined by the limit of shear veloc-
ity at t = TV 1H1/4 due to the finite
extension of the lake, we find that

F rs = Ubasin√
g ′H1

,

in which F rs < 1/
√

CS satisfies
the condition defined by Equation
7.86.

Table 7.7 Regime based on Froude
number

In this case, the maximum shear velocity (u1) is defined by the limit when the
flow feels the finite extension of the lake, which occurs when t = TV 1H1/4. From
Equation 7.79, we may find the following.

umax
1 = u1(t = TV 1H1/4) = u2∗ TV 1H1

4 H1
. (7.80)

However, the shear velocity is limited not only by the extension of the basin.
vent will be the maximum when the shear stress increases proportionally to the
stability condition. Mathematically, we may describe the maximum entrainment
velocity as

lim
β→1

CK

Ri (1−β)
=∞, (7.81)

in which β=CS u2
1/(g ′H1).

From Equation 7.81, we find the maximum shear stress velocity:

umax
1 =

√
g ′H1

CS
, (7.82)

where the Froude number of the shear flow is defined as F r =C−1/2
S . Since CS is a

constant, the Froude number should also be a constant. Usually, CS are of order
unity.
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Therefore, the maximum shear velocity is limited by the effects of finite lake
extension (Equation 7.80) and the entrainment mechanism (Equation 7.82):

umax
1 = min

(
u2∗ TV 1H1

4 H1
,

√
g ′H1

CS

)
. (7.83)

Each mechanism contributes differently to the entrainment velocity. Assum-
ing the shear velocity ∆U = u1 −u2 ≈ u1, the substitution of equation 7.79 into
7.78 gives the following result.

vent

u∗
= CK

Ri −CS Ri u2
1/(g ′H1)

,

vent

u∗
= CK

Ri −CS u2∗ t 2/H 2
1

. (7.84)

If shear does not contribute significantly to entrainment, umax
1 will never

increase to the order of
√

g ′H1/CS , as before the flow felt the presence of the
finite extension of the lake. In this scenario, there is a lower TKE production,
resulting in slower entrainment. In this case, equation 7.84 reduces to

vent = CK u∗
Ri

. (7.85)

Figure 7.14 Lake classification
based on Wedderburn number
(W ) according to equation 7.86
and the low stratification criteria
(Ri < 1).

Mathematically, this condition can be obtained by balancing the two com-
ponents defined in Equation 7.83 and the theoretical period of internal seiche
for shallow waters. Another way to represent this condition is put in terms of the
Wedderburn number (W ):

TV 1H1

4
> H

u∗
,

W > 1

2

√
H CS

H2
, (7.86)

in which H is the total depth of the water and W is the Wedderburn number. Here,
we assume SC = 1 (Pollard et al., 1973). For this condition, the shear velocity may
be neglected and the entrainment velocity can be predicted by equation 7.85, in
which vint is proportional to Ri−1.

On the other hand, if W is lower than the condition defined by equation
7.86, shear contributes significantly to entrainment. In this case, umax

1 should
be of the order of

√
g ′H1/CS before it could be felt by the end wall of the lake.

Consequently, this mechanism favors the production of turbulent kinetic energy
and consequently the deepening mechanism.

In this second case, the entrainment velocity can be predicted by the balance
between the stability and shear stress mechanisms (equation 7.84). Thus, the
entrainment velocity is given by

Ri =CS u2
∗ t 2/H 2

1
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vent = u∗

√
CS

Ri
. (7.87)

In conclusion, this criterion creates two different regimes. When the shear
velocity does not exceed the limit described in Equation 7.82, the shear stress
does not contribute to the production of TKE, leading to slower deepening (vent =
O (Ri−1)). On the other hand, if shear stress contributes to entrainment, the
deepening mechanism occurs with velocity vent = O (Ri−1/2) (Figures 7.15 and
7.14). However, note that if W is lower than H1/L (Ri < 1), the system has a
negligible stratification condition. In this case, the entrainment velocity can be
estimated using the equation 7.77 (Figure 7.14), and the internal seiche is not
susceptible to being generated, as the system cannot support oscillations in the
weak stratified system without a stratification break.

Note that even though we have only considered the flow for a time-scale
lower than the wave period t < TV 1H1/4, the shear velocity may be induced by
internal seiche and present a periodic pattern, with a local maximum value for
each wave cycle (Figure 7.15). Depending on the intensity of the shear velocity
induced by the internal seiche, this mechanism may contribute to the deepen-
ing phenomenon, which will depend on the maximum shear velocity per wave
cycle umax

1 ≥√
g ′H1/CS . A more realistic model should take into account wave

damping, which can reduce the shear dominance period (Figure 7.15)
During the internal seiche activity illustrated in Figure 7.15, even for a shear

speed that does not exceed the limit described in Equation 7.82, we can observe
the appearance of a deepening of the epilimnion. The motion of the internal
seiche will not be affected by entrainment only if the turbulent front generated
by wind shear (TT = H1/u∗) reaches the thermocline in a time greater than one-
fourth of the internal seiche, the period required for the vertical interfacial dis-
placement (TT > 0.25TV 1H1):

TV 1H1

4
> H1

u∗
,

W > L H

4 H1 H2
, (7.88)

in which L is the length of the basin, H is the total water depth, and H1 and H2

are the thicknesses of the epilimnion and hypolimnion, respectively.
Now compare the magnitude of this regime with the limits presented in Figure

7.14. As you will see, this regime will always fall into the regime of highest value
W , when entrainment occurs only due to stirring.
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Figure 7.15 The contribution of shear to the deepening of the upper well-
mixed layer. The upper figure indicates the shear oscillation as a result
of the internal seiche motion, considering the damping mechanism. The
lower figure illustrates the erosion of the surface boundary layer, in which
a higher entrainment velocity (∝ 1/

p
Ri ) is observed when the shear of the

velocity exceeds the value proposed by Equation 7.82.

We can also consider the case where the thermocline is eroded to the bottom
before the setup time (TV 1H1/4). In this case, we will not observe the evolution
of the internal wave, since the thermocline will erode to the bottom of the lake
before the interface is tilted. Mathematically, this condition would be observed
when

TV 1H1

4
> H1

√
g ′ H1

u2∗︸ ︷︷ ︸
Term 1

+ H2
√

g ′ H1

u2∗︸ ︷︷ ︸
Term 2

, (7.89)

in which the right-hand site describes the time of the turbulent front that last
reached the lake bottom, where H is the total depth of the water and u∗ is the
wind shear velocity. Term 1 shows the time it takes for the layer to accelerate to
reach the wave phase speed (

√
g ′H1), while term 2 describes the time it takes

for the layer to deepen to the bottom by shear. Note now that the velocity is
parameterized by the Richardson number, taking into account the phase velocity
of the wave, since it is the maximum velocity that the layer could reach.

Substituting the theoretical period of interfacial waves for shallow waters into
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equation 7.89 and rearranging gives

W < H1

2
p

H H2
, (7.90)

which indicates that internal waves are not susceptible to be excited, since before
the interface could be tilted, the thermocline is eroded to the bottom of the lake.
However, even for values of W higher than those prescribed by Equation 7.90, we
can expect a strong influence of entrainment on the formation of internal seiches.

7.3 Lake number

The Lake number (LN ) describes the ratio of moments about the centroid of the
lake (Figure 7.16), characterizing the dynamic stability of the water column:

LN = Mstrat

Mwind
, (7.91)

where the wind shear applied to the water surface acts to promote a vertical
displacement, contributing to lake mixing. While the gravity force resulting from
density stratification tends to force the system to return to equilibrium, inhibiting
mixing between layers.

The momentum around the centroid of the lake applied by the wind on the
water’s surface is described as

Mwind = zv

∫
σwind dAo , (7.92)

in which σwind = ρo u∗ is the shear stress of the wind, ρo density of the water
surface, u∗ is the wind shear velocity, zv is depth of the centroid of the lake, and
Ao is the lake surface area (Figure 7.16).

The stabilizing moment promoted by the force of gravity can be defined as

Mstrat =
∫

Fx (z) sinθdz, (7.93)

in which the Fx is the force of the water mass of each layer to return to equilibrium
position from a vertical deflection θ.

Taking the definition of Fx , equation 7.93 can be reduced to

Mstrat =
∫

(ρz −ρ)(z − z∗)g Az sinθdz, (7.94)

Considering that the Schmidt stability (Ws) can be written as equation 2.19
and the horizontal extension of the vertical displacement is much higher than
the vertical deflection, equation 7.94 becomes

Mstrat = Ao Ws θ, (7.95)
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Figure 7.16 Schematic representation of the moment balance of a stratified lake when
the wind induces a thermocline upwelling. σwind is the shear stress of the wind, g is the
acceleration of gravity, z∗ is the distance between the center of mass (approximated
as the center of the metalimnion), and the water surface, zv is the distance between
the centroid of the lake (center of volume) and the water surface. Mwind and Mstrat

show the orientation of the moment about the centroid for wind and the mass of water,
respectively. cm and cv are the center of mass and the centroid of the lake, respectively.
θ is the angle formed between the vertical line aligned with the centroid of the lake and
the center of mass.

in which Ao is the area of the lake surface and Ws is the Schmidt stability (equation
2.19).

Finally, combining equations 7.91, 7.92, and 7.94, we find that

LN = Ao Ws θ

ρo u2∗ Ao zv
. (7.96)

The angle of the vertical displacement θ can be approximated as

θ ≈ z∗p
Ao

, (7.97)

note that we have scaled the fetch with the square root of the surface area of the
lake (Imberger, Patterson, 1989).

Applying equation 7.97 into equation 7.96, we find the formal definition of
the Lake number (LN ):

LN = Ws z∗
ρo u2∗ A1/2

o zv
. (7.98)

The Lake number has been widely used as an indicator of the thermal stability
of lakes and upwelling events (Coman, Wells, 2012; Lin et al., 2021; Dorostkar,
Boegman, 2013). and also in combination with the Wedderburn number to pre-
dict the internal seiche activity of higher vertical modes (Imberger, Patterson,
1989). The microstructure taken in the Canning Reservoir showed that even dur-
ing low Wedderburn number conditions, high Lake number led to stronger mixing
in the surface layer and small response of the metalimnion (Imberger, Patterson,
1989). Measurements made on Lake Opengo indicated that small values of Lake
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number correlated well with temperature inversions in the nearshore benthic
boundary layer, indicating a higher thermocline tilt (Coman, Wells, 2012).

7.3.1 Relationship between Wedderburn number and Lake number

The Wedderbun number and the Lake number are dimensionless numbers often
used to predict the occurrence of internal seiche, and upwelling events, and
to describe the mixing of stratified lakes. They are obtained from a different
methodology. Although the Wedderburn number is derived from the ratio of
the stabilizing buoyancy gradient to the velocity shear that can cause turbulent
mixing, the Lake number is derived from the ratio of moments about the centroid
of the lake. Although both quantities describe the stability of the system based on
stratification and wind shear, the lake number takes into account the variability
induced by the bathymetry of the lake. Note that this does not mean that the
method captures the destabilization of upwelling events when the upwelling
interface propagates to the shore in a reservoir-shaped lake (Lorke et al., 2008;
Carvalho Bueno de et al., 2023). The method only considers the contribution of
bathymetry induced by the distance between the centroid and the center of mass.

To analyze the difference between Wedderburn number and Lake number in
a more simplified environment, consider a reservoir-shaped lake (Figure 7.17),
the Schmidt stability Ws can be reduced to:

Figure 7.17 Schematic representation of a reservoir-shaped lake with surface area of
Ao = B L, in which L is the lake length and B is the lake width.

Ws = g

Ao

∫ H

0
ρz Az (z − zv ) dz = g

Ao

∫ H

0
ρz Az

(
z − H

3

)
dz, (7.99)

in which g is the acceleration fo gravity, Ao is the area of the reservoir surface,
H is the maximum depth of the reservoir, and zv is the depth of the centroid of
the reservoir. Note that, unlike the rectangular-shaped box tank, the surface area
of the layer z (Az ) is not constant but varies with the layer z, according to the
bottom slope (H/L). This relation can be easily found through a linear regression:

Az =−LB

H
z +L B , (7.100)
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in which B is the reservoir width.
Thus, considering the model illustrated in Figure 7.17, equation 7.99 can be

rewritten as

Ws = g

Ao

(∫ h1

0
ρ1

(
− LB

H
z2 + 4 L B z

3
− LB H

3

)
dz +∫ H

h1

ρ2

(
− LB

H
z2 + 4 L B z

3
− LB H

3

)
dz

)
,

Ws = g ∆ρ h1

(
h2

1

3H
− 4 h1

6
+ H

3

)
. (7.101)

7.4 Wind resonance

Generally, the resonance between internal seiche and wind-forced oscillations
contributes to enhancing the amplitude of internal seiche and has been previously
reported by a variety of studies in different thermally stratified lakes (Antenucci,
Imberger, 2003; Simpson et al., 2011b; Vidal et al., 2007). This mechanism is
usually observed when periodic wind fluctuations over the stratified basin co-
incide with an internal seiche period. Wind forcing that blows at the water’s
surface is typically periodic because of the periodicity of weather patterns, such
as local differences in temperature and pressure that may occur over a period
of days and nights (Figure ??). Although diurnal and semi-diurnal frequency
components are often observed in the wind spectrum, a different location may
present a completely different persistent wind frequency. The wind pattern on
Lake Kinneret presents dominant periods of 24 h and 50 h (?), while on Kootnay
Lake the fluctuations in the wind force oscillate between 96 h and 216 h (Stevens
et al., 1996).

Many studies have investigated the resonant amplification of waves in peri-
odically forced basins numerically and experimentally (). For basins where the
amplitude response is nonlinear, the resonant response is strongly dependent
on the ratio of the total water depth to the lake length (H/L). However, con-
sidering the internal wave response of periodically forced lakes under shallow
water conditions (L ≈ 100 H1), three different regimes can be found. For large-
amplitude internal waves, when the period of wind forcing that blows over the
stratified basin coincides with the natural frequency of the fundamental internal
seiche, the resonant fundamental internal seiche is excited, which is followed
by the degeneration of internal surge to nonlinear internal waves. In addition,
amplification is not restricted only to basin-scale internal waves. In this case, the
non-linear and dispersive energy fluxes are also amplified (Boegman, Ivey, 2012),
resulting in progressive nonlinear internal waves formed upon the fundamental
internal seiche mode, as well as amplification of the nonlinear internal surges. If
non-linear internal waves are large enough, Kelvin-Helmholtz instabilities may
form, significantly increasing diapycnal mixing within the lake interior (Boegman,
Ivey, 2012).
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When the period of wind forcing is greater than the natural frequency of
the fundamental internal seiche, forced internal seiche response can be excited.
Usually this type of wave.....

When the period of wind forcing is lower than the natural frequency of the
fundamental internal seiche, in addition to the fundamental internal seiche mode,
internal seiche with higher horizontal modes can be generated.

In all cases, experimental results indicate that the degree of resonant amplifi-
cation is inversely proportional to the strength of the forcing frequency. Although
this could be....

The phenomenon of wind-wave resonance is also effective in amplifying
internal seiches of higher vertical modes, which are not commonly energized by
the surface wind (Boegman, Ivey, 2012). Similarly to the fundamental mode, when
the wind force frequency matches one of the higher vertical mode frequencies,
this mode can be amplified.

7.5 Internal seiche degeneration and Internal wave spec-
tra

Field studies have shown that long-standing internal waves decay at a rate greater
than what internal dissipation can account for (Imberger, 1994), which means
that internal seiche is not only susceptible to being damped by bottom friction.
The energy deposited into such long internal waves is eventually transformed
through a down-scale energy cascade across the spectrum of internal waves into
dissipative motions over the reservoir topography. Energy from internal seiches
can be transferred to higher-frequency internal waves, exciting other internal
waves with much shorter wavelengths, before dissipation. Figure ?? shows two
mechanisms of internal seiche damping. The first one is controlled essentially by
bottom friction, whilst the second is controlled by the transference of energy from
basin-scale internal waves to high-frequency internal waves, which are suscepti-
ble to propagate to the lake shore and break in on the sloping boundary. Recent
studies have also revealed that internal seiches also shoal near the lakeshore due
to the bathymetry slope (ref). In addition, due to the tendency of internal wave
energy to propagate vertically along the water column, the wave can be trapped
into slope boundaries, generating internal wave attractors, paths in which in-
ternal wave converge or diverge in a confined basin after multi reflections from
lateral boundaries. This mechanism is better discussed in Section ??. Depending
on the components of the wavevector and the bottom boundary slope, internal
waves can be completely dissipated right after generation.

To understand different regimes of internal seiche degeneration, we must
first discuss the different mechanisms responsible for extracting energy from
long internal seiches. We start by presenting a simple model scheme. In this first
analysis, we only consider a two-layer stratification. We will see in Section ?? that
continuous stratification may generate different mechanisms responsible for the
internal seiche dissipation (e.g. internal wave attractors).
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Using the model scheme described by the governing equation of motion 6.102
and applying the Boussinesq approximation and neglecting the shear stress at
the water surface, we have

∂u1

∂t
=−g

∂ζ1

∂x
, (7.102a)

∂u2

∂t
=−g

∂ζ1

∂x
− g ′ ∂ζ2

∂x
. (7.102b)

Unlike the model scheme described in Equation 6.102, we now take into
account the fluctuation of surface water. Thus, solving equations 7.102 with a
finite difference procedure along the extension of the rectangular shaped-box
tank, from ζ1(x = 0) = −a1 to ζ1(x = L/2) = 0 and from ζ2(x = 0) = ζ2(x=0) to
ζ2(x = L/2) = ζ2(x=L/2), we find the following:

∂u1

∂t
=−2 g a1

L
, (7.103a)

∂u2

∂t
=−2 g a1

L
+ g ′ 2 ∆ζ2

L
. (7.103b)

where ∆ζ2 = a2, in which a2 is the internal seiche amplitude.
Substituting equation 7.103a into 7.103b gives

∂

∂t

(
u2 −u1

)
= 2 a2 g ′

L
(7.104)

Finally, applying mass conservation (u1 H1 +u2 H2 = 0), we can write both
velocities as a function of internal seiche amplitude only. The velocity of the lower
layer is given by

∂

∂t

(
u2

(
1+ H2

H1

))
= H

H1

∂u2

∂t
= 2 a2 g ′

L

Following the same procedure for both layers, we obtain the velocities u1 and
u2:

u1 =−2 a2 g ′

L

H2

H
t , (7.105a)

u2 = 2 a2 g ′

L

H1

H
t . (7.105b)

Shear velocity
Note that the shear velocity be-
tween layers can be described by
the difference between the upper
(7.105a) and lower layer (7.105b),
thus,

∆u = 2 a2 g ′ t

L
. (7.106)

Table 7.8 Shear velocity across
layers.

7.5.1 Internal wave damping

Viscous losses occur at the hypolimnion-epilimnion interface and in the benthic
boundary layer. This viscous damping is quantified by the time scale associated
with the internal seiche energy and the rate of energy dissipation. The viscous
effects can reduce the amplitude of internal seiches by energy dissipation induced
by shear stress at solid boundaries and between layers that flow in opposite
directions (see section 7.2). The time scale of wave damping (Eq. 7.67) can be
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easily obtained considering the balance between the wave energy and the energy
dissipated on the solid boundaries:

Tdamp = ∀
Ao δ

TV1H1 (7.107)

Recall that in equation 7.107 we neglected the dissipation along the fluid
interface. According to studies, energy dissipation in the interior of real lakes is
sometimes neglected because energy dissipation in the benthic boundary layer
is much greater than in the hypolimnion-epilimnion interface MacIntyre (2010).
This assumption is not necessarily true for experiments performed in laboratory
tanks, in which the time scale of wave damping should be estimated by equation
7.63.

7.5.2 Instability

The formation of these billows can occur in a stratified fluid when the shear
velocity of each layer causes shear stress at the interface layer. As a result, the
flow becomes unstable, leading to mixing or Kelvin-Helmholtz billow formations,
which is characterized by a partial spiral almost crashing stationary wave (Fig-
ure ??). The mixing process contributes to the destruction of pycnocline and
the transport of species into the hypolimnion. When Kelvin-Helmholtz billows
develop, a considerable interfacial shear has a maximum value at the nodal point.
This type of instability can be analyzed using the local Richardson number. For
a Boussinesq fluid, the perturbation increases exponentially if the Richardson
number is less than 0.25 Miles (1961):

Ri = g ′ ∆hρ

∆u2
KH

= 1

4
, (7.108)

in which g ′ is the reduced gravity, ∆uKH is the shear velocity between layers, and
∆h is the thickness of the metalimnion, which is not the difference between H2

and H1.
Rearranging equation 7.108, the critical shear velocity uKH is defined as:

g ′ ∆h

∆u2
KH

= 1

4
,

∆uKH = 2
√

g ′ ∆hρ , (7.109)

which characterizes the maximum shear velocity necessary to generate Kelvin-
Helmholtz billows.

Applying 7.106 to equation 7.110, we find the timescale in which the flow
starts to generate Kelvin-Helmholtz instabilities:

2 a2 g ′ TKH

L
= 2

√
g ′ ∆hρ ,
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TKH = L

a2

√
∆h

g ′ . (7.110)

Using the fundamental wave period obtained from the shallow water equa-
tions, we can find equation 7.110 as a function of the fundamental internal wave
period:

TKH = 1

2 a2

√
H1 H2 ∆hρ

H
TV1H1. (7.111)

Note that this Ri defined in the equation 7.108 is related to the velocity of the
water flow and is not directly associated with the shear created by the action of
the wind, as defined in Section 7.2. When the internal wave creates a strong shear
across the pycnocline, Ri falls below 0.25. In this criterion, if the system is not
completely mixed, Kelvin-Helmholtz billows form at the node of the internal se-
iche. Although equation 7.110 only describes the criteria for long internal seiches
becoming unstable, the higher frequency waves can also induce local billowing
separately. Kelvin-Helmholtz billows can be generated before the formation of
internal seiches, according to the criteria discussed in Section 7.2.

7.5.3 Nonlinear mechanisms

Another mechanism that promotes the degeneration of basin-scale internal waves
is those associated with nonlinear processes, which can be described by the
extended Korteweg-de Vries equation (eKdV). The KdV equation describes the
balance between nonlinear wave steering and linear wave dispersion and can
be applied to a wide range of weakly nonlinear long wave problems, including
nonlinear surface and internal waves. The extended version of Korteweg-de Vries
(KdV) equation describes the propagation of unidirectional internal solitary waves
of weak to moderate amplitude (Grimshaw, 2002).

Assuming that the wave propagates along a basin of constant depth and
neglects surface waves by the rigid-lid approximation, we have the following.

∂ζ2

∂t
+ cp

∂ζ2

∂x
+

(
α1 ζ2 +α2 ζ

2
2

)
∂ζ2

∂x︸ ︷︷ ︸
Nonlinear terms

+ β
∂3ζ2

∂x3︸ ︷︷ ︸
Dispersive term

= 0, (7.112)

in which ζ2 is the amplitude of the internal wave, cp is the phase speed of the
linear internal wave, and α1 and α2 are non-linear parameters related to wave
steepening:

α1 =
3 cp

2

(
H1 −H2

H1 H2

)
, (7.113a)

α2 =−3 cp

8

(
1

H 2
2

+ 1

H 2
1

+ 1

H1 H2

)
. (7.113b)

Nonlinear steepening
Note that for a thin thickness of
the epilimnion (H1 < H2), an
internal wave of depression form
will be generated.

Table 7.9 Nonlinear steepening

The coefficient β is the wave dispersion coefficient, given by

β= cp H1 H2

6
. (7.114)
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Nonlinear steepening

Generally, for non-linear internal waves, the non-linear term is responsible for
wave steepening. The wave solution steepens ahead of the crest, and a hydraulic
jump or shock wave is generated. The initial steepening due to nonlinear effects
of a nondispersive internal wave (Fig. ??) can be described by equation 7.112
considering β= 0. To facilitate the solution of the problem, we may consider a
steepening mechanism of first order only (α2 = 0). Balancing the unsteady and
the first-order nonlinear terms leads to a timescale of wave steepening:

∂ζ2

∂t
+

(
α1 ζ2

)
∂ζ2

∂x
= 0

Tsteep = L

α1 a2
= 2 L

3cp a2

(
H1 H2

H1 −H2

)
, (7.115)

Since cp is the phase speed of the linear fundamental internal seiche, applying
equation 6.99 into 7.115 gives us:

Tsteep = 1

3 a2

(
H1 H2

H1 −H2

)
TV1H1, (7.116)

which notes that the higher the wave amplitude, the faster the internal seiche
feels non-linear effects and the internal seiche is susceptible to degenerating
into non-linear internal waves. In addition, note that the nonlinear effect can be
neglected when H1 ≈ H2.

Nonlinear dispersion

As the wave steepens, its horizontal length scales drop due to dispersive effects.
Therefore, eventually high-frequency waves develop. The timescale associated
with the dispersion mechanism is described by the balance between the unstable
and dispersion terms of Korteweg-de Vries (KdV) equation (Eq. 7.112):

∂ζ2

∂t
+β ∂3ζ2

∂x3 = 0,

Tdisp = L3

β
= 6 L3

c2 H1 H2
. (7.117)

Wave steepening domination
When Tsteep ¿ Tdisp, the steep
wave dominates the wave degen-
eration over dispersion, which
occurs when:

∂ζ2

∂t
+β ∂3ζ2

∂x3
= 0,

Table 7.10 Nonlinear steepening

Similar to the procedure before, considering that cp is the phase speed of
the linear fundamental internal seiche defined by equation 6.99, equation 7.117
reduces to:

Tdisp = 3 L2

H1 H2
TV1H1. (7.118)

Analyzing equation 7.118 we may conclude that the dispersion effect can be
neglected for most lakes since L2 À H1 H2. However, as the wave starts to steepen
its horizontal length λ decreases until the dispersive term cannot be neglected
anymore. Often the nonlinear effect combined with the dispersion mechanism



7.5 Internal seiche degeneration and Internal wave spectra 169

leads to a non-linear process that transfers energy from basin-scale internal
waves to solitary internal waves, high-frequency internal waves that propagate
with constant phase speed. Studies have identified that internal waves formed
after storm passage contained higher energy levels than expected on the internal
seiche field (Saggio, Imberger, 1998a). They pointed out that higher-frequency
waves, identified as non-linear internal waves, were responsible for the increase
in energy. The decay times and the time-varying spectra suggest that energy is
quickly transferred within the internal wave spectrum from the internal seiches
to high-frequency waves. The degeneration of internal seiches occurs primarily
as a result of turbulence production in the benthic boundary layer. Although
higher-frequency waves tend to be nonlinear, their amplitude and wavelength are
variable and must be considered to better explain the nonlinear behavior. Accord-
ing to field measurements conducted in long lakes, high-frequency waves tend
to disappear as a result of dissipation and dispersion (Mysak, 1984). However, in
shorter lakes, short waves are seen to travel back and forth along the basin several
times. Although fundamental internal seiche often contains more than 98% of
the wave energy field, the transfer of energy from long waves to shorter waves
has important consequences for mixing in stratified closed water bodies, since
high-frequency waves can shoal and break at the basin boundaries, dissipating
more than 70% of their energy at first interaction with the basin shore (Boegman
et al., 2005a). The degeneration of internal seiche into high-frequency internal
waves is often observed in most lakes and reservoirs (Horn et al., 2001; Lorke et al.,
2006; Lorke, 2007).

7.5.4 Supercritical Flow

Many studies have identified internal bores in thermally stratified lakes (Hunkins,
Fliegel, 1973; Farmer, 1978; Wiegand, Chamberlain, 1987). Nonlinear bores are
typically hydraulic jumps that represent a transition of the flow regime from
subcritical to supercritical flows (Cossu, Wells, 2013). Internal bores (Figure ??)
have often been observed due to the interaction between basin-scale internal
waves and the bottom of the lakeshore (Saggio, Imberger, 1998b), large-amplitude
internal seiches (), and supercritical conditions . The degeneration of internal
seiche, even in rectangular shaped-box tanks can favor the formation of internal
bores.

Although this kind of flow is frequently observed in oceans as a result of
tidal flow over topographic features and has been identified in some lakes, this
frequency is too high to support thermal stratification in many lakes. Generally,
since internal bores are generated when the Wedderburn number (W ) drops
below 1 (MacIntyre et al., 2009), the system is mixed before internal bores can
develop (Carvalho Bueno de et al., 2020).

Internal bore Vs Internal surge
Unlike internal bore, which is
a hydraulic jump generated by
supercritical conditions, internal
surge

Table 7.11 Internal bore and inter-
nal surge

Internal seiches produce higher vertical velocities in the center of the basin
and lower on the lakeshore. If the wave amplitude is relatively high (low Wed-
derbun number W ), the flow may be supercritical in the center of the lake and
subcritical in the coastal areas of the lake. This transition of the flow regime gen-
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erates an internal hydraulic jump, also called an internal bore. Thus, considering
a two-layer system, the flow in the epilimnion becomes critical when

F r 2 = u2
1

g ′ H1
+ u2

2

g ′ H2
= 1 (7.119)

Using the velocities defined by equation 7.105, equation 7.119 is reduced to

F r = T 2
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= 1
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√
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(
H1 H2

H 3
1 +H 3

2

)
(7.120)

Substituting the fundamental internal seiche period for shallow water into
the equation7.120, gives us

Tbore =
TV1H1

4 a2

√√√√ H H 2
1 H 2

2

H 3
1 +H 3

2

, (7.121)

where an internal bore can be developed when the velocity of the surface layer
exceeds the internal seiche speed.

7.5.5 Degeneration diagram

The time scales of each mechanism described previously can easily be compared
with each other. A simple relationship can be obtained using the thickness of the
epilimnion and the amplitude of the internal seiche, a2. Therefore, as demon-
strated by equation ??, the ratio of the initial amplitude of the internal seiche to
the thermocline depth can be written as the inverse form of the Wedderburn num-
ber. Comparison of the time scales with the relationship between the Wedderburn
number and the normalized thermocline depth can demonstrate which mecha-
nism will dominate the degeneration process during the internal seiche evolution.
These regimes have been confirmed by many experimental and numerical results
(Horn et al., 1998, 2001; Boegman et al., 2005a,b)

The first regime is evaluated by comparing the time scale of wave damping
(Equation 7.107) with the time required for nonlinear effects to become significant
on the degeneration process (Equation 7.116):

∀
Ao δ

= 1

3 a2

(
H1 H2

H1 −H2

)
,

a2

H1
= Ao δ (H −H1)

3 ∀ (H −2H1)
,

W −1 = Ao δ (1−H1/H)

3 ∀ (1−2H1/H)
. (7.122)
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The other two mechanisms of internal seiche degeneration are compared
independently with one-fourth of the fundamental internal seiche period. Com-
paring equation 7.111 with the fundamental internal seiche period, we may
observe the limit when the shear layer causes a flow destabilization, leading to
Kelvin-Helmholtz billow formations, which helps in internal seiche degeneration.
This mechanism occurs when

1

2 a2

√
H1 H2 ∆hρ

H
< 1

4
,

a2

H1
> 1

2

√
(H H1)∆hρ

H1 H
,

W −1 > 2

H 2

√
(1−H/H1)∆hρ

H1/H
. (7.123)

Considering that the velocity is too high in the basin center, we may consider
that there will be a transition between supercritial to subcritical flow, which the
energy from basin-scale internal wave will be transferred to an internal hydraulic
jump (also called internal bore). Using the same analogy and equation 7.121, we
may find that internal seiches are more susceptible to degenerating as an internal
bore when

1

4 a2

√√√√ H H 2
1 H 2

2

H 3
1 +H 3

2

< 1

4
,

a2

H1
>

√
(H −H1)2

(H −H1)3/H +H 3
1 /H

,

W −1 >
√

(1−H1/H)2

(1−H1/H)3 + (H1/H)3 . (7.124)

Note that when Equations 7.123 and 7.124 are satisfied, both mechanisms of
internal seiche degeneration may occur, which means that the internal seiche is
susceptible to degenerate into internal bore and Kelvin-Helmholtz billows.

Equations 7.122, 7.123, and 7.124 can be used to draw a diagram that shows all
different degeneration regimes (Figure 7.18). When the lake is under strong winds
or has weak stratification conditions, the ratio a2/H1 decreases, and consequently,
internal seiches are more susceptible to being damped by viscosity. Generally, for
basins of moderate size, the viscous damping time scale varies from 28 hours to
12 days. However, large-amplitude waves steepen and evolve into high-frequency
waves before its could be damped by viscosity. This criterion is satisfied for most
lakes and reservoirs in moderate to strong winds when the wave amplitude is rel-
atively high (Stevens, 1999). The steepening time scale varies strongly depending
on the amplitude of the internal wave. For a lake with H1 = 5 m and H2 = 25 m,
Tsteep ≈ 0.8 TV1H1 when the wave amplitude is maximum (a2 = H1). This indicates
that internal seiches transfer energy into small-scale waves in a period shorter
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than the fundamental wave period. In this situation, we may conclude that the
wave will transfer a significant amount of energy to high-frequency internal waves,
and less energy will be directly dissipated on interfacial and solid boundaries.

When TKH is lower than the period of internal seiche formation (TV1H1/4),
Kelvin-Helmholtz billows may form. The frequency of the most unstable mode is
just below the Brunt-Väisälä frequency of the thermocline Likens (2010). After
this value, the system is susceptible to evolve into a billow and collapse into
turbulence. In most lakes TKH is around x hour.

7.5.6 Internal wave spectra

Although we have introduced the idea of turbulence spectra in Section 2.3 and
discussed in detail the fundamental concepts of spectral analysis in Chapter
5.3, here we focus our analysis on the physical interpretation of the internal
wave spectrum. Until now, the power spectral density of the isotherms could be
used to provide information about the possible internal seiche period within the
system. However, energy cascading may tell us important information about the
mechanisms of internal seiche degeneration.
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Figure 7.18 Analytical regime dia-
gram showing a schematic struc-
ture of internal wave degeneration
in lakes and reservoirs according
to frequency scales.

The energy in the internal wave field can be described by the Garrett-Munk
spectrum (Garrett, Munk, 1972), which reconstructs the complete three-dimensional
internal wave spectrum from the one-dimensional underwater temperature ob-
servation, providing an indication of the presence of internal waves within the
system. The concepts of the Garrett-Munk spectrum are similar to those described
in Section 5.3, which describes the lake as a complex mixture of fluctuations, in
which some of them are waves, while others are of pure random nature (?). The
power spectral density of the isotherms shows the oscillation response at each
frequency (Thorpe, 2005). The isotherm spectrum suggests the existence of a
universal spectrum that describes the decay of energy from basin-scale internal
waves to small-scale turbulence (Figure 7.19). The energy cascade may character-
ize internal mixing in thermally stratified lakes and has been widely studied Horn
et al. (1998); Imberger (2013); Horn et al. (2001); Boegman et al. (2005b,a).

The spectrum is divided into four regions. The first one is bounded at the
low frequency band and comprises a large-scale motion that is often excited
due to the wind stress acting at the water surface. Large-scale motion is often
characterized by the evolution of internal seiches.

The second part of the internal wave spectrum (100 N < f < 10 N ) describes
a down-scale energy cascade that decays according to the ω−2-power law, where
ω is the angular frequency of the internal wave (Garrett, Munk, 1972). The en-
ergy cascade represents a transference of energy from large-scale motion to
small-scale turbulence, which is characterized by the formation and evolution of
high-frequency internal waves (HFIW), a mechanism described in section 7.5.3.
High-frequency internal waves can be observed in the third part of the spectrum,
where the frequency varies from 10 N to N , and is characterized by an increase
in spectral energy. Often, this pronounced peak is followed by a sharp reduc-
tion (Boegman et al., 2003; Huber et al., 2011). Evidence has also demonstrated
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Figure 7.19 Internal wave spectra. N is the buoyancy frequency and ω is the angular
frequency.

through field observations that the HFIW can also be observed in the spectrum as
a simple plateau with elevated power spectral density compared to theω−2-power
law (Lorke, 2007). Often, the peaks related to high-frequency internal waves are
followed by a rapid decay (faster than a rate of -2) toward higher frequencies.

Research has shown that internal waves with these frequencies are not con-
tinuous, they occur in groups (Saggio, Imberger, 1998a). Although it is associ-
ated with vertical advection of high-frequency internal waves and continuous
stratification, studies have shown that these waves belong to a complex field of
multimodal internal waves that can be distorted by other waves with different
frequencies (Saggio, Imberger, 1998a). These high-frequency internal waves may
be generated from many sources, such as the interaction of horizontal flows with
lake bathymetry, shear instabilities, and, most likely, due to internal seiche degen-
eration (Horn et al., 1998; Boegman et al., 2005a). Below the buoyancy frequency
(equation ??), the system is weakly stable to support the evolution and formation
of internal waves.

Internal waves can also be detected through the power spectral density of
other variables affected by internal wave motion, such as horizontal current
speed (Figure 7.20a). Unlike isothermal analysis, the influence of surface waves is
usually better analyzed by current speed because of resolution limitation. Tem-
perature fluctuations at really fast motion are unlikely to be detected because the
fluctuation is too small, and the spectral energy is comparable to noise fluctua-
tions. In Figure 7.20b we can observe a distinct peak between 10 N and 100 N ,
followed by a rapid fall with a rate of −5. This distinct peak has a frequency much
higher than the frequency of high-frequency internal waves, which are limited
by buoyancy frequency N , and is more intense near the surface, suggesting that
the peak of spectral energy at about 60 N observed in Figure 7.20b occurs due to
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surface waves. Note that applying a spectral analysis of isotherms, the analysis
of the second part of the spectrum (Figure 7.20b) would not be possible due to
resolution limitations.

./chapter7/.png

Figure 7.20 .

Although this is not clearly observed in Figure 7.20 due to the logarithmic
scaling of the x-axis, the energy content, which can be obtained from the inte-
gration described in Equation 5.9, shows that most of the energy is concentrated
in the high-frequency band, between 101 N and 102 N . This observation is con-
sistent with studies that estimated the mechanical energy content distributed
during periods of internal seiche dominance from the wind to the surface and the
internal wave field, which corresponds to 10% and 1% of the wind energy input,
respectively (Carvalho Bueno de et al., 2023; Guseva et al., 2021; Imboden, 2003).
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7.6 Laboratory Experiments

7.7 Model

7.8 Application
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Exercises

Exercises for 7.1 Internal Seiche

P7.1 Assuming a 60 km long lake that is susceptible to excite internal seiche
with the first three vertical modes according to power spectral density,
find the Rossby deformation radius for each mode. Explain why we
should expect different values depending on the wave mode.

P7.2 Considering the regular Sturm-Liouville problem with infinite number
of solutions F j for distinct eigenvalues b j :

∂2F

∂x2 + (A(x)+b) F (x) = 0,

with boundary condition F (x = 0) = F (x = 1) = 0, derive the orthogo-
nality relation.

P7.3 Considering the regular Sturm-Liouville problem with infinite number
of solutions F j for distinct eigenvalues c j :

∂2F

∂x2 + c A(x) F (x) = 0,

with boundary condition F (x = 0) = F (x = 1) = 0, derive the orthogo-
nality relation.



Chapter 8

Introduction to Gravity currents

Gravity current is a primary horizontal flow driven by horizontal differences in
temperature or salinity (Britter, Simpson, 1978), being observed in a wide range
of natural situations and industrial processes, from atmospheric cold fronts to
geostrophic ocean currents (Legg et al., 2009; Garratt, 1986). In lakes and reser-
voirs, river water flows can often promote the formation and propagation of grav-
ity currents (Roget, Colomer, 1996), playing a crucial role in aquatic ecosystems
and biogeochemical cycles by redistributing phytoplankton and zooplankton
organisms (Scotti, Pineda, 2007), and causing the resuspension of sediments and
chemical contaminants (Eames et al., 2001; Kyrousi et al., 2018). The increase
in turbulence due to the evolution of the gravity current may also influence the
mean flow and increase the mixing in the benthic boundary layer due to the
change in the structure of the turbulence (Buckee et al., 2001). In the ocean, grav-
ity currents are often generated by salinity differences, influencing large-scale
ocean circulation and, consequently, playing an important role in the physical
climate system (Legg et al., 2009; Jkedrasik, Kowalewski, 2019). Large turbidity
currents have been observed in ocean basins due to sediment slumps on the
upper continental slope, strongly affecting sediment transport (Pickering et al.,
1992; Wynn et al., 2000; Azpiroz-Zabala et al., 2017). Gravity currents are also
observed in the atmosphere, such as squalls (Auer Jr, Sand, 1966), sea-breeze
fronts (Wiel van der et al., 2017), and avalanches (Hutter, 1996).

The gravity current is characterized by a thinner body and a head of the lobes
formed by a series of lobes and clefts that generate frontal vortexes and shear
instabilities (Hallworth et al., 1993). The head is followed by a shallower layer
with low mixing with the ambient fluid, where intense mixing occurs at the back
of the gravity current head (Simpson, Britter, 1979; Best et al., 2001) (Figure 8.1).
Mixing is also followed by an entrainment mechanism that favors an increase in
the current head volume and a dilution of the gravity current, losing part of its
excess buoyancy.

177
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Figure 8.1 Gravity current propagating in laboratory tank. a) Illustration
of the gravity current and b) image acquired by the camera of a released
gravity current over an erodible bed.

8.1 The constant volume lock release

One of the simplest experiments for the gravity current and one of the most
studied is the constant volume lock release, which is characterized by a fixed
volume of fluid ρc released into a stationary ambient fluid ρa (Figure 8.4). Initially
the system is divided by a vertical barrier in which a denser fluid is placed on one
side, whilst the other is filled with a lighter fluid. When the barrier is removed, the
denser fluid flows along the bottom of the channel, whereas the lighter fluid flows
along the surface in the opposite direction. The gravity current propagates with
speed

u f = F r
√

g ′
o ho , (8.1)

where F r is the Froude number, a dimensionless function of the density ratio
ρa/ρc , ho is the initial height occupied by the denser fluid, g ′

o = g ∆ρ/ρc is the
reduced gravity current, in which ∆ρ = ρc −ρa .

Figure 8.2 The setup of the lock-exchange experiment for a) a symmetric
release and b) a non-symmetric release, in which the barrier is placed near
the end of the tank.
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Instantaneously after vertical barrier release, the potential energy of the
denser water column is transferred to kinetic energy, accelerating the current
horizontally. This initial phase is called acceleration phase, and occurs in a rapid
time-scale. If the current has a sufficiently high Reynolds number, the gravity
current reaches slumping phase, in which the current flows with constant speed
due to the balance between inertial and buoyancy forces. Due to the finite ex-
tension of the fluid volumes, the gravity current decelerates in the subsequent
stage, called self-similar phase. As the current decelerates, the viscous forces
become important at some moment, and deceleration increases even more due
to viscous forces. This phase is called viscous phase, and is accompanied by a
strong change in head structure. All phases are detailed in sections 8.1.1 to 8.1.4,
and are illustrated in Figure 8.3.

Figure 8.3 Illustration of the gravity current in each phase of the flow.

8.1.1 Acceleration phase

As the potential energy of the denser water column is transferred to kinetic energy,
the gravity current starts to propagate horizontally, increasing its front speed until
it is completely controlled by the balance between inertial and buoyancy forces.

The time-scale associated to the acceleration phase can be easily derived
by assuming F r = 1 (equation 8.1) and an uniformly accelerated motion (a =
∆u/∆t ):

Ta = u f

g ′
o
=

√
g ′

oho

g ′
o

=
√

ho

g ′
o

, (8.2)

where u f is the speed of the gravity current, ho is the height of the lock, and
g ′

o is the initial reduced gravity. Assuming a gravity current of ∆ρ = 30 kg/m3
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and h = 10 cm, the time-scale associated to the acceleration phase is around 0.6
seconds, which means that the potential energy is transferred to kinetic energy in
0.6 seconds. After the acceleration phase, the gravity current reaches the constant
velocity phase, where the current travels at a constant speed, characterized by a
constant Froude number (equation 8.1).

8.1.2 Slumping phase

The speed of the current front is observed to be constant (within the experimental
error) during the slumping phase. The current speed is controlled by the density
difference between the two fluids and is described by equation 8.1, in which F r
is constant for the Boussinesq current (ρa/ρc ≈ 1). For the classical symmetric
lock-exchange release, in which the vertical barrier is placed in the center of the
tank, as illustrated in Figure 8.4a, studies have shown that F r = 0.5 (?).

Yih’s analysis (1947)

Based on a finite box-shaped reservoir and assuming a non-slip condition at the
upper and lower boundaries, Yih (1947) derived an expression for the current
speed from the balance between potential and kinetic energy to find F r = 0.5.

Assuming that the ambient and current flows have the same velocity (u f =
uc

f = ua
f ), the change in potential energy per width EP over an infinitesimal time

step (∆t ) can be written as:

∆EP

∆t
= ρi g hi ∆Asi

2∆t
= ρi g h2

i

2∆t �
��*

ui ∆t
∆xi

∆EP = ρc g u f

2

(
− ho

2

)2

+ ρa g (−u f )

2

(
ho

2

)2

∆EP = u f h2
o∆ρg

4
, (8.3)

in which g is the acceleration of gravity, u f is the speed of the gravity current, ho

is the total water depth, and ∆ρ = ρc −ρa .
The total gain of the kinetic energy EK is

∆EK

∆t
=
ρi u2

f ∆Asi

2∆t
=
ρi u2

f h ∆x

2∆t

∆EK =
ρc u3

f ho

2

ρau3
f ho

2

∆EK =
u3

f ho

2

(
ρc +ρa

)
. (8.4)

Taking into account ∆ρ¿ ρ, we may simplify equation 8.4 to find

∆EK =
u3

f ho

2

(
ρc +ρc −��>

= 0
∆ρ

)
= u3

f ho ρc . (8.5)
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Balancing the potential and the kinetic energy, EP +EK = 0, we find that

u f =
√

g ho

4

ρc −ρa

ρc
=

√
g ′ho

4
, (8.6)

in which g ′ = g∆ρ/ρ is the reduced gravity.
Rearranging the equation 8.6, give us

u f /
√

g ′ho = 0.5, (8.7)

where the u f /
√

g ′ho is know as the densimetric Froude number (F r ) and ho is
the initial height of the gravity current fluid.

However, since fresh water flows along the surface and the denser current
flows along the bottom of the channel underneath fresh water, both currents
suffer different shear stresses. Studies have formulated a more appropriate ex-
pression taking into account the conditions of the bottom and free surface. ?
found F r = 0.465 and F r = 0.590 for the bottom and surface gravity currents,
respectively.

Local Froude number

Other studies have proposed different values of the Froude number, which ex-
tend the theoretical results for different conditions. Based on the shallow-water
framework, the Froude number can be parameterized by the local values of the
front, called front Froude number or local Froude number (F r f ):

F r f =
u f√
g ′

f hh

, (8.8)

in which u f is the speed of the current front, g ′
f is the local reduced gravity, and

hh is the height of the local gravity current.
The value of the Froude number based on the local current characteristics of

the head has been studied by many authors (Benjamin, 1968; Rottman, Simpson,
1983; Huppert, Simpson, 1980).

Benjamin (1968)

During this constant velocity phase, Benjamin (1968) has proposed, considering
energy conservation theory, that the local Froude number is only dependent on
the relationship between the local current height and the depth of the ambient
fluid (hh/ha). When balancing the total pressure force (per unit of span) across a
section up and downstream (Figure ??), we may find that

P1 = P2,

ρ c2
1 ha

2
+ ρ g h2

a

2
= ρ c2

2 h + ρ g h2

2
. (8.9)
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The conservation of mass, defined as

c1 ha = c2 h, (8.10)

can be applied to 8.9 to find the dimensionless velocity upstream:

c2
1

g h
= h2 −h2

a

ha h −2 h2
a

. (8.11)

Another interesting result is the dimensionless coefficient of propagation
velocity based on hh = ha −h. From Equation 8.11 and considering hh = ha −h,
we can find that

c2
1

g h
= (ha −hh)2 −h2

a

ha (ha −hh)−2h2
a

,

c2
1

g h
= (ha −hh)2 −h2

a

ha(ha −hh)−2h2
a

,

c2
1

g hh

= (ha −hh)(−2 ha hh +hh
2

)

−ha hh −h2
a

c2
1

g hh

= (ha −hh)(2 ha −hh)

ha (ha +hh)
(8.12)

Assuming φ= hh/ha , equation 8.12 becomes:

F rB = c2
1√

g ′ hh

=
√

(2−φ)(1−φ)

1+φ , (8.13)

in which c1 = u f is the front velocity. For the limit of φ= 0.5, the solution leads
to F rB = 1/

p
2 = 0.71. The local height is unlikely to generate φ> 0.5 without any

external input energy. Studies have shown that even φ= 0.5 is not common since
interfacial mixing reduces the height of the current, limiting φ to 0.347, when
maximum dissipation is achieved within Benjamin’s framework (Benjamin, 1968).

Shin et al. (2004)

To account for the influence of the backward-propagating wave that reflects on
the end wall of the tank and propagates toward the current head, studies have
suggested that, for a low Reynolds number (low mixing), the Froude number is
given as (Shin et al., 2004; Marino et al., 2005):

F r f = 0.5

√
φ′

(
2−φ′

)
, (8.14)

in which φ′ = ho/ha , where ho is the current height in the original lock position,
as illustrated in Figure 8.6. Note that for φ′ = 1.0 (shallow release), equation 8.14
yields the same value obtained by Benjamin (1968) (Eq. 8.13). For infinitely deep
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ambient fluids (φ′ ≈ 0), the local Froude number estimated by Benjamin (1968) is
approximately 40% higher than the value found by Shin et al. (2004).

The constant-velocity phase persists until the upper and lower motion be-
comes asymmetric due to the finite extension of the volume release. The asym-
metric behavior is observed in the experiment that places the vertical barrier near
the end wall of the channel, as illustrated in Figure 8.4b. Initially, the current
propagates exactly as in a classical symmetric lock-exchange experiment (Figure
??a). However, due to the finite length of the tank, the secondary flow is reflected
by the endwall (Figure ??b), generating an internal bore that propagates away
from the wall (Figure ??c). The reflected wave (internal bore) propagates faster
than the current front Rottman, Simpson (1983), and eventually catches up the
gravity current front (Figure ??d). Observations have suggested that it usually
takes 3 to 10 lock-lengths `o (Marino et al., 2005). When it occurs, the gravity
current decelerates, reaching the self-similar phase, in which the gravity current
starts to slow down.

Figure 8.4 Illustrations of the collapse of a denser gravity current at succes-
sive times. The figure shows a) the symmetrical slumping phase, b) the flow
reflection, c) the propagating internal bore in the current body, and d) the
internal bore reaching the gravity current head, initiating the self-similar
phase. Figure 8.5 Current height defi-

nition for different theoretical
framework.Assuming that the release occurs `o from the left end wall of the tank (Figure

8.4), we can derive a timescale to determine when the flow is reflected due to
the finite extension of the tank. Assuming that the upper motion travels with the
same speed as the denser gravity current, we have the following.

Tv = `o

u f
= `o√

g ′
o ho

, (8.15)

in which `o is the lock length. Taking into account the same example previously
and assuming that `o = 30 cm, we obtain a Tv = 1.8 sec, indicating that the upper
motion will reflect back in the end of the channel 1.8 seconds after the vertical
release.

This time scale describes the time the flow is reflected at the end of the tank.
The time-scale of the entire phase must take into account the time that takes to
the internal bore catches up to the gravity current front.
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8.1.3 Self-similar phase

When the finite initial volume becomes important, the speed of the gravity current
starts to decrease. Although the denser fluids mix with their surroundings, mass
conservation implies that the initial buoyancy (Bo = g ′

o `o h) is kept constant
due to the increase in volume of the gravity current when it flows away from
the release. The current length `x can be estimated by self-similar theory for a
plane (n = 0) and axisymmetric (n = 1) flow (Huppert, Simpson, 1980; Rottman,
Simpson, 1983). Neglecting mixing and treating the current front as an abrupt
interface, the front position of the current may be determined as a function of the
initial buoyancy only:

`x (t ) = ξ
(
g ′

o ho `o

)(2−n)/6

︸ ︷︷ ︸
initial buoyancy

t 2/(3+n), (8.16)

in which ξ is a dimensionless constant that has been estimated by many authors.
Benjamin (1968) found ξ≈ 1.89, while Shin et al. (2004) estimated ξ≈ 1.39. Both
theoretical coefficients have been found for slumping phase, and there is no
guarantee that they are valid for the self-similar regime (Marino et al., 2005).

Studies have also suggested that ξ is related to the local Froude number F r f .
Grundy, Rottman (1985) found ξ from the height profile for a self-similar plane
gravity current:

ξ=
( 27F r 2

f

12−2F r 2
f

)1/3

. (8.17)

Deriving in time the `x we can find an expression for the gravity current speed
for the self-similar phase:

u f =
2

3+n
ξ

(
g ′

o ho `o

)(2−n)/6
t−(1+n)/(3+n), (8.18)

which indicates that the gravity current decelerates as t−1/3 and t−1/2 for the
planar and axisymmetric currents, respectively. In this phase, the gravity current
head decreases until the flow becomes laminar, leading to small mixing and no
formation of billowing structures. Studies have shown that equation 8.18 works
in infinity deep ambient only, which is represented by partial depth release or
large-time limits (?Grundy, Rottman, 1985).

8.1.4 Viscous phase

As the gravity current decelerates, the Reynolds number decreases and viscous
forces starts to play an important role on the gravity current evolution, deceler-
ating even more the current front. This effects leads to a higher decrease of the
current head height, which may also lead to a changed in shape (Figure ??)

Figure 8.6 Shape of the gravity
current head affected by viscous
force.

To quantify the importance of viscous forces, the Reynolds number Re f

should be calculated,

Re f =
u f h f

ν
, (8.19)
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in which ν is the kinematic viscosity of the fluid (m2/s), h f is the relative height
of the gravity current head, and u f is the front speed of the gravity current. When
Re f À 1,000, the gravity current is essentially driven by the balance between
buoyancy and inertial forces, resulting in a pronounced current head (Fig. ??).
When Re f ¿ 1,000, gravity current is susceptible to high dissipation rate due to
viscous forces, leading to further dependence of velocity on time. In this phase,
the balance between inertial and viscous forces leads to U ∼ t−4/5.

This phase does not come just after the self-similar phase. In case of a initial
low Reynolds flow, the viscous forces may play an important role right after the
acceleration phase. The time-scale associate to this phase is associated to the
viscous phase quantities, and may not be described by the initial condition of the
flow:

Tν =
ν `2

ν

g ′
ν h3

ν

, (8.20)

where each variable here is associated to the viscous phase.
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