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How to use the book

This book presents a complete understanding of the fundamental concepts of
lake mixing and internal wave generation in thermally stratified lakes and reser-
voirs. Readers will learn how internal waves in thermally stratified lakes and
reservoirs are identified and analyzed, understanding all concepts related to
spectral analysis and internal wave models, including a general overview of the
historical developments responsible for revealing the beauty of the internal wave
mechanisms. Readers will also have access to practical applications, similar to the
problems faced by scientists. This book also introduces the idea of fluid mechan-
ics applied to stratified systems and can be used to introduce some advanced
concepts of fluid mechanics, which can be easily followed by undergraduate and
graduate students, field engineers, researchers, or lake and reservoir managers
and regulators.

Pre-requisites: Knowledge of the undergraduate level of Environmental Fluid
Mechanics is essential. This includes topics such as those from conventional
Fluid Mechanics courses, but also those from Environmental Engineering appli-
cations and/or Transport Phenomena, including substance and heat transport
and mixing.

Additionally, we strongly recommend knowledge from course(s) on Turbulent
Diffusion and Mixing, usually offered at graduate level. Topics should include
mixing and transport processes in unstratified systems (without density effects),
such as turbulent shear flows and dispersion, with a focus on the derivation
and solutions of the advection-diffusion equation, including turbulence and
dispersion effects:

Recommended books for acquiring graduate-level pre-requisite knowledge
are:

e Heide Nepf MIT
¢ Scotts book combined with Gerhards lecture notes from EFM courses
e Fischer, chapter,

e Environmental Transport and Fate, 2012, Benoit Cushman-Roisin (free pdf
download http://www.dartmouth.edu/~cushman/courses/engs43.html)

Not covered: Even though, highly related to stratified flows, this book does
not cover topics on Jets and Plumes or outfall related applications. On one hand,
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because completely new concepts would need to be covered, and on the other
hand, because already good books are available here for. Recommended reading
in this respect is the following:

* Chapter from EFM
* My Thesis
* Book from Desal?

* Book by Phil Roberts

For specific (and advanced) topics on environmental fluid mechanics applica-
tions, we recommend Joe Fernando for all types of mixing and transport in envi-
ronmental fluid systems.

Objective: Our main goal was to have a textbook for teaching and learning.
We did not want another compendium of research articles or like (Web of Science,
ResearchGate, GoogleScholar, and others do-a good job with their search engines),
but really something to study for students and provide help for teachers to set up
simple experiments and learning stratified flows.

Publishing format: Open access format would be great. However, most
students here (how it is nowadays in Europe or China?) still study with printed
books or study materials,~and I myself like to have a printed version too, but
I might be old fashioned already. Of course, it could be the printed pdf, this
would be fine for me too. Are your students using pdfs only or do they work
with printed books? And what about university libraries? In Brazil, they still
acquire lots of printed books, making them available to students. Thus, the only
advantage of professional publishers is having a printed version, which is easily
buyablein stores, and having an ISBN. We have seen that Springer (https://www.
springeropen.com/books) also offers open access, but probably for considerable
costs (minimum 1500 euros). An option could be publishing through university
editors (university press). UFPR has one (https://www.editora.ufpr.br/), but
very bad English information, and burocratic and intense peer review. Or using
Amazon Publishing (https://www.amazon.com/gp/education-publishing), looks
very simple, includes perfect marketing and ISBN, and print-on-demand, but
needs to be commercial (at least 1 USD per book). Or just put the pdf with all
additional files on a webpage, which can be updated whenever needed. UFPR
has free hosting for that. Or through the water associations (e.g. IAHR or IWA,
https://www.iwapublishing.com/).

Additional material This book provides a key link to additional materials,
including up-to-date content, data sets, videos, and algorithms that are available
to download on the website www.website/stratifica.com. The additional material
provides useful support for the readers. Where appropriate, supplementary mate-
rials have been added to help readers better understand what is being discussed
in this book. Many supplemental content is available for exercises and also to
explain theories through laboratory experiments.


https://www.springeropen.com/books
https://www.springeropen.com/books
https://www.editora.ufpr.br/
https://www.amazon.com/gp/education-publishing
https://www.iwapublishing.com/
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The icon shown in the margin will appear throughout the text where addi-
tional material is available.

The icon shown in the margin will appear throughout the text where addi-
tional video material is available.

Book structure: The book has a modular format, allowing it to be covered in
different semesters and courses. Examples of combinations are as follows:

Acknowledgements: Scott, Jirka, Heidi Nepf, etc.
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Chapter 1

Introduction

Internal gravity waves are propagating disturbances within a stable, density strati-
fied fluid. In natural systems, such as oceans, lakes, and reservoirs, these density
differences are often caused by variations in water temperature or salt concentra-
tions. In laboratory settings, internal waves have been replicated using various
fluids with differing densities (e.g., water and oil). To generate internal waves,
similar to surface waves, the interface must be disrupted. However, what sets
surface waves apart from internal waves?

Waves occur at fluid interfaces. These could be aninterface between water
and air or an interface between two phases (liquid and gas). These are commonly
called surface waves. However, fluid interfaces can also occur within a fluid, and
within the same phase, whenever there are density differences.

Internal waves occur in every perturbed stratified system. As the energy
needed to increase a water volume in the air is greater than the energy needed
to increase a water volume in the lower water density due to buoyancy force,
internal waves often are muchlarger than surface waves generated by the same
energy input. Internal waves have been reported in different scientific areas, from
cosmology to limnology. The scientific community has observed internal waves in
the ocean, atmosphere, lakes, reservoirs, ponds, and stellar interiors (Figure 1.1).
In a simple view, the formation of internal waves depends on the stratification
condition and the strength of the perturbation that creates the waves.
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Figure 1.2 Every climate model
predicts an increase in sea level
in the next hundred years. The
difference between the models

is essentially due to the number
of uncertainties. One of these un-
certainties that needs to be better
understood is the comprehension
of the formation, evolution, and
breaking of internal waves.

Figure 1.1 Train of internal waves off Northern Trinidad: Taken on January
18, 2013, from the International Space Station (NASA/JSC).

Recently, investigations have pointed out that internal waves of 170 meters
in amplitude produced in the Luzon Strait, between Taiwan and the Philippines,
are a key to understanding climate change and are an important missing piece of
the puzzle in climate modeling (Alford et al., 2015). Internal waves in the ocean
influence the ocean turbulence and consequently affect the ocean currents that
carry heat and salinity around the globe. This phenomenon increases the mixing
of the sea, which transfers heat from the upper ocean to deeper layers and leads
to even more ice loss.

One of the first scientific observations' of internal waves in natural environ-
ment were made by Nansen (1897) during an expedition to the North Pole in
1893. The Norwegian explorer Fridtjof Nansen felt an extra drag on his Fram boat
due to internal waves as the ship passed the Nordenskiold Archipelago, north of
Siberia. He called the phenomenon dead water, reporting that it slowed his boat
to a quarter of its normal speed:

“Fram appeared to be held back, as if by some mysterious force,
and she did not always answer the helm. In calm weather,
with a light cargo, Fram was capable of 6 to 7 knots.

When in dead water she was unable

to make 1.5 knots®.”

E Nansen (1897)

Ekman (1904), as a Ph.D. student motivated by the observations made by
Nansen (1897), was the first researcher to study in detail the dead water effect:

I There are some evidences raised recently from ancient sources that indicate that internal waves
could be one of the reasons behind the defeat of Antony and Cleopatra against Octavian at the
naval battle of Actium. For years, historians have believed that the bad weather condition could be
the probable reason for the surprised strategy adopted by Antony, which remained at a standstill
for at least three hours, until midday, instead of, as was customary in ancient times, attacking at
dawn.

2The knot is a unit of speed equal to one nautical mile per hour, 1 knot = 1.852 km/h



“The present investigation of “Dead-Water” was occasioned by a letter in November
1898 from Prof. NANSEN asking my opinion on the subject. In my reply to Prof.
NANSEN I remarked that in the case of a layer of fresh water resting on the top of
salt water, a ship will not only produce the ordinary visible waves at the boundary
between the water and the air, but will also generate invisible waves at the
salt-water fresh-water boundary below; I suggested that the great resistance
experienced by the ship was due to the work done in generating these invisible
waves.”

Vagn Walfrid Ekman (1904)

He explained that energy from the ship is transmitted to internal waves, which
occur between layers of different densities. The boat experiences an important
loss of steering power and, consequently, the speed of the vessel decreases dra-
matically (Figure 1.3). The interest of investigations involving internal waves grew
up after 1965, when the most tragic incident involving a USA submarine with a
crew of 129 on board fell down to deep water due to a passage of a large internal
wave. The US Thresher submarine was going along the thermocline when an
internal wave took it down quickly to really deep waters. The submarine lost
orientation and had problems due to high pressure, killing the 129 people on
board (Govorushko, 2011).

The Dead Water phenomenon described by Nansen (1897) was essentially
caused by the friction caused by the boat. In contrast, internal waves observed in
the South China Sea are mainly generated by tidal flow that passes through the
topography of the seafloor and wind blowing through the ocean surface (Alford
et al., 2015). As the internal waves propagate west from the Luzon Strait, they
steepen, producing a package of internal waves propagating with 150 meters of
amplitude. Similarly, the formation of internal waves in lakes and reservoirs is
caused by many sources, but the action of the wind on the surface of the lake is
one of the most important sources of energy for the internal wave fields (Mortimer,
1952). Since the system is.closed, the long wave formed by the wind creates a
stationary internal seiche.

The first observation of internal seiches in thermal stratified lakes was pro-
vided by Thoulet (1894), Watson (1903) was nevertheless the first limnologist to
provide the right interpretation of internal seiches in thermally stratified lakes.
Watson (1903) concluded that the temperature oscillation observed during a cam-
paign in Lake Loch Ness was due to an uninodal baroclinic internal wave caused
by the action of the wind on the lake surface.

Fridtjof Nansen (1861-1930, Norwe-
gian) was born at Store Froen, near
Oslo, the capital of Norway. He was an
explorer, scientist, diplomat, humani-
tarian and Nobel Peace Prize laureate.
Nansen received his Ph.D. from the Uni-
versity of Oslo in 1888. He made several
discoveries with polar expeditions with
his ship, The Fram, which served as

an oceanographic, meteorological, and
biological laboratory. In 1922 he was
awarded the Nobel Peace Prize for his
work on behalf of the victims of the First
World War and related conflicts.
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Importance of internal waves in
stratified lakes

Influence the population
dynamics of many organ-
isms, such as the metalim-
netic phytoplankton and
planktonic larvae popula-
tions;

Influence the dispersion of
pollutant discharges;

influence sediment resus-

pension, which can lead to
an increase in greenhouse

gas emissions;

Influence the thermal strat-
ification, increasing verti-
cal mixing, and instabilities
in different regions of the
system,;

In large lakes, influence the
microclimate of the region;

The break of the internal
wave may affect the shore-
line;

The knowledge of stratifi-
cation and internal waves
is essential for lake and
reservoir management, as
well as analysis of system
changes due to climate
change.

Table 1.1 Internal wave impor-

tance

Perturbation creates surface
and internal waves

Pycnocline

Figure 1.3 Interfacial wave generated by a boat moving on a two-layer strati-
fied fluid.

Since the beginning of the 20th century, internal waves in thermally strati-
fied lakes have been extensively studied. Many researchers have defended the
importance of internal waves in lakes and reservoirs, spreading the knowledge of
their existence and importance (Wedderburn, Williams, 1911; Mortimer, 1952).
New technologies have provided a better understanding of internal wave pat-
terns in lakes, revealing its strong influence on the system dynamics. Spectral
analysis and improved water temperature measurement have proven to be use-
ful for improving the detection of internal waves in lakes. A phenomenon that
initially appeared to be excited just in some rare cases actually occurs frequently
in lakes and reservoirs of different sizes and shapes, playing a crucial role in the
turbulence level, biogeochemical cycles, and water quality of these ambients.

Recent research has addressed the importance of internal waves in reservoirs
and lakes. Although only a small fraction of total wind energy crosses the surface
boundary layer and energizes internal seiche fields (Wetzel, 2001; Wiiest, Lorke,
2003; Wiiest et al., 2000), studies have shown that the wind-induced internal wave
is responsible for large-scale motions in the benthic boundary layer, favoring
episodes of sediment resuspension (Bruce et al., 2008). Another study in Lake
Geneva has observed that up to 40% of hypolimnetic volume was exchanged after
internal seiche events (Umlauf, Lemmin, 2005). Internal seiches play an impor-
tant role in the transfer of energy to smaller-scale motions and vertical mixing in
the interior of the basin (Boehrer et al., 2000; Etemad-Shahidi, Imberger, 2006;
Lorke, 2007; Preusse et al., 2010), and in the bottom boundary layer (BBL), where
the friction of the wave-induced current bed can induce levels of turbulence
30 times higher than the magnitude found in the interior of the basin (Wiiest,
Lorke, 2009). Vertical displacement of water masses associated with internal
seiches also affects the vertical position and distribution of phytoplankton and
zooplankton and, consequently, also their productivity and ecological interac-
tions (Mortimer, Horn, 1982; Rinke et al., 2007; Hingsamer et al., 2014), or can lead
to anoxic water upwelling from deeper layers to the surface (Flood et al., 2021).



Furthermore, seiche-induced bottom currents enhance oxygen penetration into
sediment, favoring microbial organic matter degradation (Frindte et al., 2013).

The energy deposited into such long internal wave is eventually transformed
through a down-scale energy cascade across the spectrum of internal wave due
to the strong turbulence production in the benthic boundary layer. Observations
have shown that it allows a fundamental internal seiche to degenerate into a train
of propagating waves, increasing the mixing of the system (Boegman et al., 2005b).
Recent observation also indicates that internal seiches are susceptible to break
on the lakeshore, being a mechanism that creates a mixing hotspot in a specific
location ().

According to Mortimer (1952), internal waves have been considered one of
the most important processes of vertical water movement and mixing in lakes
and reservoirs. Therefore, mechanical understanding and prediction of internal
seiche activity is of great importance for understanding the energy flux paths, as
well as ecological and biogeochemical processes in stratified lentic ecosystems.

This book starts with a detailed description of stratified flows in. Chapter 2.
Theories, experiments, and exercises on density-induced flows are presented.
Chapter 3 applies and deepens the theory on stratified flows on lakes and reser-
voirs, covering all aspects of physical limnology.

Readers interested in field studies and laboratory experiments will find guid-
ance and examples in Chapter 4. For those interested in further processing field
or laboratory data, we present data processing techniques and spectral analysis
in Chapter 5.

The theory on interfacial waves and internal waves is presented in Chapters 6
and 7, respectively, including numerical model applications.






Chapter 2

Stratified Flows

This chapter serves as an introductory section, outlining the fundamental knowl-
edge necessary to comprehend the content of this book. Before delving into the
topic of internal waves, it is essential to have a solid foundation in stratified fluids,
fluid mechanics, and wave theory. Therefore, this chapter offers a concise review
of these subjects to provide a comprehensive understanding of the motion of
internal waves.

The chapter begins by providing an overview of stratified fluids, including an
introduction to hydrostatics and the derivation of equations of motion. These
concepts are presented to establish the necessary groundwork for subsequent
discussions on internal waves.

For readers who are already familiar with the principles of fluid mechanics,
wave theory, and stratified fluids, it is recommended to participate at least in the
exercises provided at the end of this chapter. These exercises offer an opportunity
to reinforce and apply the knowledge covered in the introductory material.

2.1 Stratified Fluids

A stratified fluid is characterized by spatial variations in its properties. One of
the primary and significant forms of stratification in lakes and reservoirs is the
variation in density along the vertical axis, resulting in a layered system. Fluid
stratification is a common occurrence in various natural environments, such as
lakes, reservoirs, oceans, and the atmosphere, and in many aspects of our daily
lives. Density stratification has a profound impact on mass fluxes, which may not
always adhere to Fick’s law (Imboden, 2003). Typically, the density gradient plays
a crucial role in determining the pattern of fluid movement.

Therefore, we define a stratified fluid when its density p is a function of space
and/or time,

p=fxy2z2t=[M/L3.

In laboratory tanks, it is possible to create systems using different fluids, such
as water-oil or water-gasoline. Due to variations in density, these fluids segregate

11
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Figure 2.1 Pycnometer and den-
simeter, devices to measure the
density of water.
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Liquid density

Densimeters and pycnometers
(Figure 2.1) are devices that are
used to measure the density of
most liquids (e.g. water, oil, and
gasoline). These devices make
direct measurements based on the
weight of a measured volume of
fluid. In chapter 4 some exercises
to measure the density of fluids
are presented.

Chapter 4 is dedicated to exper-
imentally demonstrating many
ways to measure the density of

different liquids.

Table 2.1 Liquid density measure-

ments

Air density

Why is a room heater placed near
the floor and an air conditioner
near the ceiling?

The answer is related to the influ-
ence of temperature on air density,
since colder air is denser than
warm air, it sinks to the bottom of
the room. Since we do not want

a stratified system, we create the
ideal conditions to mix the air to
obtain a more uniform tempera-
ture throughout the room.

Table 2.2 Stratified air

into distinct layers. For instance, in the case of a water-oil mixture, the lighter oil
will naturally rise to the top, while the denser water will settle at the bottom.

Now, let us address the question: "Can a fluid, such as water, have different
densities?" The answer is a resounding "yes!". A compelling example can be
observed when diving into a deep pool. As you descend further, you may see that
the water is becoming progressively colder. This phenomenon occurs because as
the water cools, its density increases, causing it to become heavier. In situations
where density variations are primarily induced by temperature differences, we
can refer to this as thermal stratification.

Another way to vary the density of water is by varying its salt concentration
(salinity), which is called salinity stratification. A classical example of this differ-
ence may be observed when you try to float in a swimming pool or in seawater.
Technically, you can float more easily in seawater than in a swimming pool be-
cause seawater is heavier than freshwater. The buoyancy force over your body,
a net upward force that acts over any object in any fluid, is higher in seawater,
pushing you upward to the water surface.

Another way of altering the density of water is by adjusting its salt concen-
tration. An illustrative example highlighting this disparity can be experienced
when attempting to float in both-a swimming pool and seawater. Technically
speaking, it is generally easier to float in seawater compared to a swimming pool
due to the higher density of seawater in relation to freshwater. This disparity in
density results in a greater buoyancy force acting on your body. The buoyancy
force, which represents the net upward force exerted on any object submerged in
a fluid, becomes more pronounced in seawater, propelling you toward the water’s
surface.

The physical characteristics of water, such as temperature and salt concen-
trations, play a pivotal role in the generation of density stratification within the
water. It should be noted that these influences extend beyond water alone. For
example, Table 2.2 presents an illustration of how changes in temperature can
lead to variations in air density. While numerous examples highlight fluid density
as a function of various properties, our primary focus in this context revolves
around waves within natural systems, placing our attention squarely on water.

Due to our focus on computing the water density of lakes and reservoirs, direct
measurements utilizing densimeters and pycnometers are not practical. This
could help measure the water density near the water surface, however, estimating
water density in deeper regions is not as trivial. Extracting water samples at
various depths from a stratified lake can be time-consuming and has the potential
to alter water properties, thereby affecting water temperature and, subsequently,
water density. To achieve high temporal and spatial resolution, we rely on indirect
measurements for the analysis of water density. Understanding how physical
properties, particularly temperature and salinity, influence the density of water
becomes crucial as we recognize their significant impact.
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2.1.1 Properties that control water density
Pressure

Under natural environmental conditions, pressure only significantly affects the
density of water in the abyssal zone, which is a layer within the pelagic zone of the
ocean, typically found between 1 km and 5 km deep. The presence of an immense
water column above this region compresses the seawater, resulting in increased
pressure in the deepest portions. As a consequence, high pressure causes a slight
reduction in water volume, leading to a density change of approximately 4.5%.

In the abyssal zone, seawater exhibits slight compressibility, similar to the
behavior observed in most gases under moderate pressures. However, it is impor-
tant to note that for most lakes, which have depths less than 300 m, pressure does
not exert a substantial influence on the density of the water. Instead, temperature
and salinity emerge as the main driving factors shaping water density in such
cases.

Temperature

The density of pure water at 4 °C and atmospheric pressure is approximately
1000 kg/m®. When water is heated from 4 °C to 25 °C, for example, its density
undergoes a slight decrease. This reduction in density can be attributed to the
increased kinetic energy of the water molecules as heat is added. Consequently,
water atoms vibrate at a faster rate, causing the water to occupy a larger volume.
However, this expansion in volume is not readily noticeable. Even at its boiling
point, when the system is saturated with thermal energy, the water begins to
evaporate.

In contrast, when the water temperature drops below 4 °C, the formation
of ice crystals begins within the lattice structure, leading to the formation of
numerous stable hydrogen bonds among water molecules (see Figure 2.2). As
water molecules occupy alarger volume due to the crystal formation, the density
of water gradually decreases until it reaches the freezing point.

Salinity

Salinity can be defined as the ratio of conductivity. The conductivity of water
is influenced by the number of dissolved ions per unit volume and their ability
to move freely. However, the mobility of ions is also influenced by temperature.
Moreover, temperature can affect the dissociation of molecules, leading to an
increase in the number of ions in the solution. When examining natural wa-
ter bodies such as seas, rivers, reservoirs, and lakes, the relationship between
temperature and conductivity exhibits highly nonlinear behavior.

In these natural-water systems, higher temperatures, combined with an in-
creased number of ions, result in elevated water conductivity. This relationship is
the underlying reason why seawater demonstrates higher conductivity and, con-
sequently, higher density compared to freshwater. The conductivity and density

§= Water density in natural en-
vironments is influenced
not only by variations in wa-
ter temperature and salinity,
but also by pressure, chem-
ical compositions, and sus-
pended matter.

By,
&w{

L0e0lo;

Figure 2.2 Liquid water structure
with crystal lattice formation.
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Figure 2.3 Comparison between
water density calculated by EOS-
80 and TEOS-10 as a function of
temperature only.

of water are thus influenced by factors such as temperature, ion concentration,
and their complex interactions in natural water environments.

Equation of state

Since the late nineteenth century, researchers have dedicated their efforts to
establishing an empirical equation capable of determining the density of water
using measurements of pressure, temperature, and salinity. This endeavor to
create an equation that encompasses the entire range of these three variables has
been the result of numerous laboratory experiments that have been frequently
reviewed over the years. The resulting equation, known as the Equation of State
for Water, represents a nonlinear function used to estimate the density of water,
or its specific volume, based on measurements of salinity, temperature, and
pressure.

One of the first formulations for pure water was proposed by Tait (1888),
which allowed the estimation of the water density using only temperature values.
Building on the predictive capabilities of Tait (1888), Kell (1975) presented a
polynomial equation of state specifically designed for pure water. This equation
remains valid for temperatures ranging from 0 °C to 30 °C and pressures below
108 Pa:

po+a17—a212—a3 T3+614T4—d5‘[5

Ppure = , (2.1)

l+agt

in which p, = 999.83952 kg/m? is the reference density, 7 is the water tem-
perature, a; = 16.945176 kg/(m® °C), a, = 7.9870401 103 kg/(m® °C?), a3 =
46.170461 1078 kg/(m3 °C?), a4 = 105.56302 1072 kg/(m® °C*), as = 280.54253
10712 kg/(m®°C®), ag = 16.879850 103 1/°C.

Throughout the years, numerous studies have made significant contributions
by proposing new equations of state for water. These advances have been aimed
at improving accuracy and expanding the range of applicability. Tanaka et al.
(2001)have proposed a new equation of state for pure water valid from 0 °C to
40 °C, under a pressure of approximately 101 325 Pa:

Po(T+b1)? (T +by)
b3 (T + b4)

Ppure = Po — ) 2.2)
in which p, =999.974950 + 0.00084 kg/mg, by = —3.983035 +0.00067 1/°C, by =
301.797 1/°C, by = 522528.9 1/°C2, and by = 69.34881 1/°C.

One of the most famous algorithms for estimating water density was intro-
duced by Fofonoff, Millard (1983) in the UNESCO technical report (EOS-80). This
algorithm, which gained significant recognition, utilizes a polynomial function
consisting of 25 terms. It effectively characterizes the density of water as a func-
tion of temperature (1), salinity (s), and pressure (p):

P(T,8,p) =po(1 =P (T—70) — Bs(s = So) = Bp(p— Po)), (2.3)
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in which f; is the thermal expansion coefficient, S is the saline contraction
coefficient, and f,, is the compressibility coefficient. The parameters § exhibit
variations dependent on temperature, salinity, and pressure, resulting in inter-
dependence between these variables. However, it is important to note that this
interdependence extends beyond just pressure, salinity, and temperature. In
reality, there exists a complex interplay among multiple quantities, including
dissolved substances and the chemical and physical characteristics of water (see
Figure 2.4).

The equation of state formulated by Fofonoff, Millard (1983) is valid for seawa-
ter, with a salinity range that typically varies from 2 to 42; however, observations
have demonstrated good applicability even for salinities lower than 2.

Recently, important developments toward a new International Thermody-
namic Equation of Seawater (TEOS-10) have been made. The new formulation
updates the thermodynamic descriptions and also incorporates the solute compo-
sitions. Although the new approach is totally consistent with Maxwell’s thermody-
namic cross-differentiation relations and incorporates the new thermodynamic
description of pure water, considering a thermally stratified lake without salinity
contribution, the solutions of the EOS-80 and TEOS-10 equations of state fit very
well with water density measurements, which presents a small difference between
both expressions (Figure 2.3).

Taking into account the contribution of salinity s (g/kg) and temperature 7
(°C) to the estimation of water density, equation 2.3.can be reduced to

P = Ppure + 1S+ C2 sk C3 sz, (2.4)

in which p is the density of water, ppure is the density of pure water (which can be
obtained from equation 2.1), and the coefficients cy, ¢», and c3 are

¢1 =0.824493 —-0.00408991
c3=—0.005724 +1.0227 x 10 %7
¢3 =0.00048314.

The influence of chemical composition and suspended matter

The presence of dissolved substances in water can introduce notable changes in
density, particularly in geochemical lakes characterized by high concentrations
of dissolved substances. While most natural systems do not exhibit elevated
concentrations of dissolved substances that exert a dominant influence on water
density, it is essential to recognize that in certain environments, such as areas
with volcanic activity, this factor can become significantly important. For ex-
ample, lakes or ocean regions experiencing volcanic activities might encounter
elevated concentrations of specific substances, such as methane, which can have
a substantial impact on water density. In such scenarios, the concentration of
dissolved substances plays a significant role in the density variation, affecting the
hydrodynamics of these systems.

SALINITY

DENSITY

DISSOLVED
OXYGEN

METABOLIC
RATE

COMPUNDED
ToXICITY

Figure 2.4 Water density and its di-
rect and indirect interdependence.

We neglected the c’s coef-
ficients terms with order
higher than 7!
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Figure 2.5 A temperature-salinity-
density diagram obtained from
equation 2.4.

Studies have identified that iron accumulation in deep waters and carbon
dioxide and calcite production can generate density stratification (Hongve, 2002;
Rodrigo et al., 2001), which could play an important role in vertical circulation
and wave propagation (Boehrer et al., 2009, 2010).

To model chemical stratification, Boehrer et al. (2010) have proposed an
implementation to incorporate the chemical composition of lakes to estimate
water density. The algorithm RHOMYV calculates the partial molal concentration
of dissolved substances. The RHOMYV algorithm is coupled with equation 2.1
for pure water, as proposed by Kell (1975), to determine the combined effect of
temperature and chemical components on water density. Further information
and an online calculator can be found at https://www.ufz:de/index.php?en=
39156). This combined approach allows for a more comprehensive modeling
of water density, taking into account both the temperature and the chemical
composition of the water to capture the complexities of chemical stratification in
lakes.

To incorporate the density of dissolved substances, a straightforward ap-
proach is to consider the mass and volume of each substance based on its molar
concentration. By summing the mass and volume contributions of each dissolved
substance, the overall density of the solution can be found:

o 1+YbiM;
P 1/ppure"'Zi bivi’

(2.5)

in which ppyre is the density of pure water (kg/ m3), b; is the molal® concentration
(kg/mol), M; is molar mass of the substance i (kg/mol) and V; is the partial vol-
ume of molal, which is slightly dependent on the ionic strength and temperature
(which can vary depending on the substances considered). The index i indicates
each dissolved substance present in the water.

Although electrical conductivity can be influenced by dissolved substances in
lakes, the influence of the composition and concentration of solutes plays a cru-
cial role in determining the water density of electrical conductivity, and cannot be
accurately obtained by assuming constant coefficients as defined in equation 2.4.
Based on this concept, Moreira et al. (2016) proposed a new approach to account
for the composition of different solutes presented in geochemical lakes from tem-
perature and conductivity measurements, but assuming two different coefficients
(1o and 1,) that vary depending on the composition and concentration of solutes
in lakes:

P = Ppure T Ao Ko5 + A1 Ko5(T — T25), (2.6)

in which ppyre is the density of pure water (kg/ m)3, k5 is the electrical conduc-
tivity in 25 °C (mS/cm), 7 is the temperature of water (°C), and 725 = 25 °C is the
reference temperature.

Field measurements from different lakes have identified a dominance of
double-charged ions (e.g. CaSO4) and a higher concentration of solutes, lead-
ing to higher values of 1,, which can vary between 0.48 kg cm/(m>mS) and

11-molal means 1 mol dissolved in 1 kg of water
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0.83 kg cm/ (m3mS) (Figure 2.6). However, unlike A,, which varies strongly, the
coefficient A; is around —0.0015 kg cm/(K mS m?), not showing significant varia-
tions from lake to lake (Moreira et al., 2016).

Fluid systems can also be stratified by the variation in suspended matter
concentrations (e.g. turbidity currents). The contribution of suspended matter
to the density of water can be obtained by the sum of the density of water for
pure water (equation 2.4) and the fraction of the mass of suspended matter.
Mathematically, it can be expressed as

ised
i Ppure
pzppure"‘zcl(l_pi_), 2.7)
i=0 p sed

in which ppure is the density of pure water, p ée 4 is the density of the suspgnded
matter fraction i, iseq is the number of suspended matter fractions, and C* isthe
mass concentration of the suspended matter fraction i.

2.1.2 Stratification in natural water bodies

Now that we have identified the key factors that influence changes in water
density, the question remains: What mechanisms drive these variations in natural
environments, such as lakes and oceans?

The temperature in natural environments is largely governed by solar radi-
ation, which comprises short-wave radiation emitted by the Sun. However, the
overall heat flux at the water surface is a composite of various factors, including
long-wave radiation (infrared and water surface radiation), evaporation, precip-
itation, heat convection, and inflow and outflow fluxes. This comprehensive
balance provides information on the mechanisms through which heat energy is
transferred to the water body.

Figure 2.7 shows the individual contributions of each component to the heat
balance of Lake Zurich in‘different seasons. When the heat balance is positive,
the lake serves as a heat reservoir and retains excess energy, commonly observed
during the summer season. On the contrary, in the winter season, the lake experi-
ences heat loss, with a substantial portion of the heat energy being transferred to
the atmosphere.

In general, heat radiation strikes the water’s surface, and some of this radia-
tion is reflected back into the atmosphere. The remaining energy penetrates the
surface of the water and is subsequently transported through the water column.
However, because of the low conductivity of water, the amount of solar radia-
tion absorbed decreases with increasing depth, resulting in the formation of a
vertical thermal gradient. Consequently, surface water tends to be warmer than
the deeper layers of the lake. During the summer season, most lakes exhibit a
stratified structure characterized by three distinct vertical zones: the epilimnion,
metalimnion, and hypolimnion.

0.5 [ o7 0.8

Figure 2.6 Distribution of values
of 1, and 1, obtained for differ-
ent lakes (data assembled from
Moreira et al. (2016)).
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Figure 2.8 Thermal stratification
in a typical stratified freshwater
basin during summer.
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Figure 2.7 Illustration of the monthly heat flux based on Lake Zurich mea-
surements (Imboden, Wiiest, 1995). x-axis indicates the temporal (sea-
sonal) variation. y-axis shows the amount of monthly mean heat flux be-
tween water and the atmosphere, in which negative values indicate that the
lake is losing heat to the atmosphere.

The epilimnion is the top layer of a lake formed as a result of the accumulation
of heat energy from the atmosphere. It is characterized by warmer temperatures
and higher oxygen levels, creating favorable conditions for microorganisms at the
base of the aquatic food web. This region plays a crucial role in supporting the
biodiversity of lakes. Unlike terrestrial ecosystems, lighter organisms in aquatic
ecosystems often have an advantage in capturing light because of the buoyancy
effect, which keeps them near the water surface where light is abundant.

The mixing of the epilimnion can vary depending on factors such as wind
exposure and intensity. In larger water bodies with stronger winds, the depth
of mixing can be greater. The temperature of the epilimnion can vary across
different regions of the water body and is influenced by several factors, including
wind intensity, lake size, suspended matter, accumulation of microorganisms,
and geographical location.

In freshwater lakes, hypolimnion is the bottom layer and is characterized by
being the coldest and densest layer. This zone is typically anoxic and supports only
a limited number of species. When a lake is thermally stratified, the hypolimnion
becomes isolated from atmospheric conditions, and as a result, solar radiation
does not reach this zone.

The lower heat energy in the deeper regions of the hypolimnion is accom-
panied by the dissipation of turbulent kinetic energy from large-scale currents
(Lemckert, Imberger, 1998; Wiiest et al., 2000; Fricker, Nepf, 2000), internal seiches
that propagate through the lake (Lorke et al., 2005; Cossu, Wells, 2013) and break
near the lake shore (Carvalho Bueno de et al., 2023), the breaking and reflection of
high-frequency internal waves (Thorpe, 1997; Michallet, Ivey, 1999; Lorke, 2007),
and the interaction of large-scale currents with the lake’s topography (Rudnick
etal., 2003). These turbulent mechanisms within the hypolimnion often result in
small temperature gradients, often lower than 0.03 °C (Lorke et al., 2005).

The metalimnion is a zone in freshwater lakes where the water temperature
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drops very fast, in which the point of greatest water temperature change is called
the thermocline. It is important to note that, while some sources use the term
"thermocline" interchangeably with "metalimnion," we will use "thermocline"
specifically to refer to the point of the fastest temperature drop, avoiding any
confusion. Thus, the thermocline represents a single interface within the larger
metalimnion (Figure 2.8).

The metalimnion is situated between the epilimnion (upper layer) and the
hypolimnion (lower layer) of the lake. Its thickness can vary from one body of
water to another. In smaller lakes, the thermocline is typically located around 3
meters below the water surface. In larger lakes, the thermocline can extend up
to 10 meters, and the metalimnion may occupy several meters (Hunkins, Fliegel,
1973).

Pycnocline

In a similar manner to the thermocline’s relationship to temperature, the pyc-
nocline represents a distinct point where the density gradient within the water
column is most pronounced. Consequently, in freshwater lakes, the thermocline
aligns with the pycnocline, as temperature variations serve as the main driving
force behind the stratification observed throughout the water column (see Section
2.1.1).

In scenarios where the stratification of the water column is mainly driven
by salinity, pycnocline corresponds to halocline, indicating the region with the
fastest decline in salinity. However, in larger water bodies, such as oceans and
extensive lakes and reservoirs, where both temperature and salinity contribute
to density variations, the pycnocline does not necessarily align with any specific
cline.

In these cases, the pycnocline characterizes the area within the water column
where the density changes most abruptly due to combined effects of temperature
and salinity fluctuations. It \is important to note that the precise location and
characteristics of pycnocline can vary depending on the specific water body and
the interplay between temperature, salinity, and other substances.

Figure 2.9 provides a visual representation of the seasonal changes in the
vertical temperature and density profiles of a hypothetical dimictic lake. This type
of lake undergoes two complete mixing events per year, resulting in periods of
unstratified conditions. Additionally, the lake is covered by ice during the winter
season.

The figure helps illustrate the variations in temperature and density through-
out the year, demonstrating the presence of pycnocline during stratified periods.
Pycnocline is observed as a distinct layer where the density gradient is most pro-
nounced, separating the stratified layers of the lake. By examining this figure,
we can better understand how the temperature and density profiles fluctuate
seasonally, with the presence of pycnocline being a notable characteristic during
periods of stratification.
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Figure 2.9 Seasonal variation of the thermal structure of a dimictic lake. a)
Summer, b) Fall, c) Winter, and d) Spring.

2.2 Theory of Stratified Flows

Fluid mechanics is a fundamental field that encompasses the study of gases and
liquids and their behavior under various conditions. It can be divided into two
primary branches: fluid dynamics and statics. Fluid dynamics focuses on the
movement of fluids, with subdisciplines such as aerodynamics and hydrodynam-
ics. These branches share fundamental concepts, as the motion of both liquids
and gases is governed by similar equations. However, their assumptions differ
significantly.

Fluid dynamics employs mathematical techniques to solve problems, sim-
ilar to those in other scientific disciplines. However, due to the complexity of
real-world situations and limitations in current mathematical tools, substantial
simplifications are often necessary. Consequently, the motion of fluids can be
simplified in various ways. For instance, in aerodynamics, the influence of gravity
is typically disregarded, while the compressibility of gases remains essential and
cannot be overlooked, even in low-pressure conditions.

As our objective is to investigate stratified flows in natural systems, this section
focuses solely on the flow of liquids, particularly water. While we disregard the
compressibility of the liquid, we do take into consideration the influence of
gravity. It is important to note that this chapter provides a comprehensive review
of hydrostatics and hydrodynamics, which are crucial for successfully navigating
this book. A solid grasp of mathematical techniques and fundamental principles
of fluid mechanics will undoubtedly facilitate comprehension in this section. To
initiate our analysis, we begin by examining the hydrostatic properties of stratified
flow, assuming that readers are already well acquainted with the fundamental
concepts of fluid mechanics.
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2.2.1 Hydrostatic

The presence of a gravitational field significantly affects buoyant forces and has a

profound influence on the dynamics of stratified flows (Socolofsky, Jirka, 2005).

Density variations between layers give rise to buoyancy-restoring forces that alter
density and pressure, thus suppressing vertical movements. This stratification
enables us to characterize the behavior of the system in terms of stability, which
can manifest itself in three states: unstable, neutral, and stable (Figure 2.10).

The neutral fluid state is characterized by an unstratified fluid, where the
particles encounter similar resistance to motion in all directions (Socolofsky, Jirka,
2005). On the contrary, unstable stratification occurs when a heavier fluid resides
above a lighter fluid. When a fluid parcel is displaced, it tends to move away from
its original position, leading to elevated levels of mixing and turbulence. Table
2.2 provides examples of mechanisms that exemplify the conditions of unstable
stratification.

In lakes and reservoirs, these events occur primarily near the surface of the
water, where the wind generates a thin, uniform layer. This process, known as
surface cooling, induces a decrease in the water temperature close to the water
surface. Consequently, there is an increase in vertical mixing of surface waters.

However, stable stratified fluids exhibit a configuration in which a heavier
layer resides above lighter layers. When a fluid parcel is displaced in such a
system, it tends to retrace its path back to its original position. Freshwater lakes
frequently show stable stratification as a result of the mechanism described in
Section 2.1.2. In this context, the warmer layer, formed by atmospheric heat
energy, is primarily concentrated near the water surface. It is important to note
that stable stratification is the only state capable of supporting internal waves
within the fluid.

a) b) c)
op_
0z 0 %’<0
L
unstable neutral stable

Figure 2.10 Stability definition according to the density profile.

Since internal gravity waves are exclusively supported in stable stratified sys-
tems, our analysis primarily centers on stable stratification conditions. However,
we also touch upon an unstable condition arising from internal wave motion and
the mixing regimes within lakes.

® v21
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Figure 2.11 The movement of a
fluid parcel V by a small amount
from the equilibrium position.
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Figure 2.12 The distribution of
buoyancy frequency (Hz), derived
from typical temperature profiles.

Buoyancy-Frequency

An essential characteristic of a stratified environment with density distribution
is the buoyancy frequency, also known as the Brunt-Viisélid frequency. This
frequency serves as a measure of static stability within the system. To comprehend
the static stability, we begin by assuming the presence of a perturbation, which,
in the case of static stability, can be described as a vertical displacement of a fluid
parcel V.

Initially, we consider the vertical movement of a water parcel ppar with a
volume V, which is balanced by buoyancy force Fj, and gravitational force F,;,,
thus maintaining equilibrium between the fluid parcel and the surrounding
ambient fluid pamp, (Figure 2.11):

0%

Mpar W =—-8 (Ppar — Pamb) ¥V = g (Pamb — ppar) v, (2.8)

in which ( is the vertical displacement and my,;, is the mass of the fluid parcel.
Note that the parcel volume is V = mypa/ ppar-

Considering that the volume parcel V. undergoes density variations as a result
of vertical displacement, we can modify equation 2.8 to determine the necessary
acceleration needed to induce this change:

2 00var
¢ - g (apamb _ Oppa )C» 2.9)

oz Ppar \ 0z 0z

in which equation 2.9 is an ordinal differential equation in ¢ with a general solu-
tion { = cos(w t)
Applying the general solution to 2.9, we find

0
—(,()2— g (apamb _ ppar)zo. (2.10)
Ppar \ 0z 0z
Rearranging equation 2.10, we can find
0
w:\/— g (apamb- ppar). @.11)
Ppar \ 0z 0z

Assuming that the variation of pressure p causes a density change in the
parcel volume that leads to a density similar to the surrounding (0par = Pamb), We
can write equation 2.11 as

w=1]- 8 (apamb_apamb O_P)
Pamb 0z ap 0z

(2.12)

The potential density p,mp can be calculated taking the contribution of tem-
perature 7, salinity S, and pressure p, leading to

0Pamb _ 0Pamb 6_7 " 0pamb a_S + 0pamb a_p (2.13)
0z ot 0z 0S 0z Op Oz
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By combining equation 2.12 with equation 2.13, we obtain the following
expression:

w:\/_ 8 (apamba_'[_'_apamba_s)’ 2.14)

Pamb\ OT 0z 0S 0z

The expression 2.14 indicates that, while pressure may contribute to changes
in water density, it does not play a role in stability considerations. Often, for
simplicity, equation 2.14 is commonly presented as

(2.15)

in which g is the gravitational acceleration, p is the potential density, p is the
characteristic density of the fluid.

Physically, the buoyancy frequency represents the frequency at which a dis-
placed fluid volume would oscillate when vertically displaced. In this mechanism,
the fluid parcel gains vertical velocity and, upon reaching its initial level, its in-
ertia drives it further downward. Consequently, the parcel is lifted upward by a
buoyant force, resulting in persistent oscillations around the equilibrium level
(Cushman-Roisin, Beckers, 2011).

The buoyancy frequency characterizes the maximum frequency of internal
waves (oscillatory disturbances) that the stratification can sustain before being
overwhelmed by turbulence and mixing. A larger density difference between the
epilimnion and hypolimnion corresponds to a higher buoyancy frequency, result-
ing in an increased stability of the system. As a consequence, the metalimnion
layer acts as a barrier to the transfer of heat, aquatic microorganisms, chemical
compounds, and nutrients. Furthermore, the metalimnion layer contributes to
reducing current velocities and affecting light reflection (Imberger, 1998).

Lake stability

Lake stability, also known as Schmidt stability, refers to the energy required per
unit of surface area to overcome the resistance to mechanical mixing within a
lake. It serves as an indicator of both the strength of stratification and the density
stability of the water column. The concept of lake stability was initially derived by
Schmidt (1928) and later modified by Mortimer (1959).

Schmidt stability, typically expressed in units of J/m?, quantifies the amount
of energy needed to homogenize the entire system to the same temperature
without any additional heat flux.

Figure 2.13 shows a lake that exhibits a typical stratification pattern. It is
important to note that the density difference that must be overcome during
mixing by each volume element is directly proportional to Ap = (o, —p). Here, p,
represents the density at a specific depth z, while p represents the mean density
of the system, which is obtained when the lake is thoroughly mixed. The mean
density is defined as:

1 H
0= —f pzAz dz, (2.17)
vV Jo

Buoyancy frequency distribution
The buoyancy frequency can be
obtained for thermally stratified
lakes and has a typical distribution
as illustrated in Figure 2.12. Gen-
erally, the buoyancy frequency is
estimated as

_ /-8 Ap
N@ =-S5, @19

in which Az is the distance be-
tween two measurements, p

is the mean water density, and
Ap = p(i+1)—p(i). The index i
indicates the discretized position
of each measurement, where i = 0
is the measurement closest to the
water surface. The water density
is obtained from the equation of
states described in Section 2.1.1
and is based on discretized mea-
surements.

Table 2.3 Buoyancy frequency in
stratified lakes
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Another approach

There is another approach to eval-
uate lake stability (equation 2.22)
as described by Schmidt (1928).
However, although the expression
gives the same result, the value is
negative, indicating that the water
below the centroid supply works
for the system (Idso, 1973). Obvi-
ously, this concept is not correct
when we want to find the total
work, which indicates that equa-
tion 2.22 is "more meaningful"
(Idso, 1973).

Table 2.4 Schmidt stability.

where V is the volume of the lake, H is the total water depth, and A; is the interfa-
cial area at depth z. It is important to note that the mean density p is not simply
an average calculated from a single profile. This is only applicable to rectangular
tanks. In other cases, the mean density must be calculated considering the center
of mass of the stratified lake, taking into account the total volume of the lake V.

Figure 2.13 Typical lake and the work required to break the stratification.

The force associated with this density gradient can be expressed as

F:f(pz—ﬁ) g A, dz, (2.18)

in which g is the acceleration of gravity.

If we consider the forces acting at a distance d = z — z., where z, represents
the center mass of the lake (the depth at which the mean density is located), we
can express the work required per unit area for this transformation as follows

_Fd_ g
T A, A

N

H
f (pz—p) (z—z4) Az dz. 2.19)
0

Expanding 2.19 gives us:

g (1
Ws:—f (pz,—p) (z—z.) Az dz,
Ao 0

g H H H H
:—(f pzzAzdz—f Pz Z« Azdz—f ﬁzAzderf 0 2« Azdz)
Ao \Jo 0 0 0

g H H H H
= —([ [ dz—z*f 0z Az dz—ﬁf z A, dz+p z, f A, dz),
Ao \Jo Jo Jo ) Jo )

oV zy Y ‘V,

in which the second term of the right-hand side can be simplified by applying the
mean density, exactly as defined in 2.17. The integration specified in the last term
is a clear description of the lake volume V, and the integration of the third term
on the right-hand side is the definition of the depth of the centroid (geometric
center):

1 H
2y = —f z Ay dz. (2.20)
v Jo
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Thus, finally, we have

H
W (f pzZAdeW_ﬁzvVW)r
0

-8
Ao
g H
Ws:—(f pzzAzdz—ﬁz,,V), (2.21)
Ao 0

By substituting Equation 2.17 into Equation 2.22, we can determine the well-
known form of Schmidt Stability

g H H
Ws:—(f pzzAzdz—z,,f pzAzdz),
Ao 0 0

g 1
W = —f pz Az (z—2zy) dz. (2.22)
Ao 0

The value of W increases as the stratification condition becomes stronger.
A deeper lake will also require more energy to mix, resulting in higher values
of W compared to shallower lakes. The Schmidt stability typically ranges from
11 J/m? to 43000 J/m? (Read et al., 2011; Mortimer, 1959), although there is no
defined limit for this index. It is important to note that W;is not influenced by
the intensity of the wind, indicating that this index does not provide information
on the actual state of mixing within the body of water. Instead, it reflects the lake’s
capacity to resist mixing because of density gradients and the volume of water
present.

For a discrete data set, we can rewrite equation 2.22 as

g H
Y p: A (z) Az, (2.23)

W, = =
AO z=0

in which z, is the depth of the geometric center of the lake.

Hydrostatic Pressure

Hydrostatic pressure is the pressure that fluids exert at a given point without the
presence of motion. mathematically, hydrostatic pressure is defined as follows:
op  _
°P - 5g, (2.24)
0z
in which p(z) is the hydrostatic pressure, g is the acceleration of gravity, and p(z)
is the density of water.

The hydrostatic pressure within a multilayer system (piota) can be determined
by summing the hydrostatic pressures within each individual layer, as follows:

N
Protal = ) 0; & Azi, (2.25)
i=0
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Figure 2.14 Two-layer stratifica-
tion with perturbed motion on

the surface of water () and the

pycnocline region ({).

Figure 2.15 System and control
volume configuration.

in which N represents the total number of layers, g denotes the acceleration due
to gravity, p; signifies the fluid density in layer i, and Az; represents the thickness
of that specific layer.

Consider the scenario depicted in Figure 2.14 as an illustrative example. In this
two-layer system, we aim to derive an expression that describes the hydrostatic
pressure within the lower layer. It is important to note that both interfaces, the
water surface and the thermocline, deviate from their equilibrium positions,
denoted by the functions n and {, respectively. It is worth mentioning that both
functions (1 and {) are defined with respect to the lake surface.

Assuming that the hydrostatic pressure in the lower layer is described by the
contribution of the hydrostatic pressure in each layer above z, we can divide P, (z)
into one component from the upper layer and another from the lower layer:

P5(2) = Payer 11, ¢) + Player2((, 2). (2.26)

The contribution of the upper layer to hydrostatic pressure P»(z) is defined as
Player1(1,() = p1gHi + 0180~ p18(H +{)

Playerl(n»() =ﬁg(n—()- 2.27)

The contribution of the lower layer is given by
PlayerZ(C»Z) =-pog(H1+2)+p28(Hy +()

Player2((,2) = p28(( — 2) (2.28)

By substituting equations 2.27 and 2.28 into equation 2.26, we obtain the
following expression:
P(z)=p1gn+Apgl{—p28z. (2.29)

Mass Conservation

The concept of mass conservation dates back to 1789 when Antoine Lavoisier
established, through chemical reactions, that mass remains constant in an iso-
lated system; it is neither created nor destroyed. In fluid mechanics, this principle
holds, where the change in mass within a fixed control volume (CV) must be
equivalent to the net mass inflow through its boundary conditions, known as the
control surface (SV). Mathematically, this relationship can be expressed in the
integral form as follows:

d
—f edVv +§ em-u)dS=0, (2.30)
dr Jev sy

in which p is the density of the fluid, u = u; is the velocity vector, and n is the
normal outward point for the surface segment dS.

The first term in equation 2.30 accounts for the rate of change of mass within
the control volume CV, while the second term denotes the net inflow of mass. As
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the mass conservation equation is formulated in the Eulerian reference frame,
the total-time derivative can be moved inside the integral as a partial derivative.
Therefore, by applying this transformation and utilizing the divergence theorem,
equation 2.30 can be expressed as follows:

dp aQui)
— dv =0. 2.31
fcv(al‘ i 0x; (231

Equation 2.31 remains valid for any arbitrarily large volume, which is only
possible if the integrand vanishes completely. Hence, we can deduce the follow-
ing:

B .
¢ . doui
ot 0x;

=0. (2.32)

Incompressibility
By employing the product rule, we can express equation 2.32 as follows:

De _ _dui (2.33)
Dt 0x; ' '
in which the derivative Dp/Dt represents the rate of density change experienced
by a fluid particle. It is important to note that this term is typically neglected
when the density remains constant under pressure variations. In such cases, the
flow is referred to as incompressible or solenoidal. Consequently, equation 2.33
simplifies to an incompressible form:

=0. 2.34
e (2.34)

The density field does not need to be uniform in an incompressible flow. How-
ever, the crucial characteristic of an incompressible flow is that a fluid element
retains its density throughout its motion in the flow. This means that the density
of a fluid element remains constant over time. For instance, the flow in stratified
lakes can be regarded as incompressible despite the non-uniform density caused
by stratification.

Imagine a fluid particle following a typical trajectory in a two-dimensional
space, influenced by a steady velocity field as depicted in Figure 2.16. In the fluid,
there exists an imaginary line tangent to the velocity vector at each point, which
is referred to as a streamline. Consequently, we can define a stream function y
that relates to the velocity components of the flow as follows:

ou= 2—15 and pv= g—z (2.35)

In the case of incompressible flow, the stream function can be characterized

by the density of the fluid, denoted p. The relationship between the stream

Figure 2.16 Streamlines.
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Streamlines and stream function
The flow velocity can be expressed
through the vector potential ¢
such that

u=Vxy (2.37)

However, defining the stream
function y becomes more com-
plex when it involves multiple
components. As a result, the
stream function y is primarily
defined in axisymmetric three-
dimensional (3D) flows and in all
two-dimensional (2D) flows where
¥ has only one component,

¥ =0,0,9).

If the velocity vector is a known
function, the stream function is
determined analytically by inte-
grating the equation 2.38.

Table 2.5 Stream function.

In Section 2.2.3, we provide
the vorticity equation de-
rived from the momentum
equation. This equation fa-
cilitates the identification
of the forces responsible for
the generation or enhance-
ment of vorticity.

function and density can be established through the derivative of ¥ (x, y), where
v is defined as the product of p and y:
ow oy

dy = —dx+ —dy.

= 2.36
0x o0y (236)

There are two approaches to obtain the stream function vy (x, y). The first
method involves replacing dx; with the corresponding velocity field and consid-
ering dy = 0 along a streamline. This approach leads to a linear, first-order partial
differential equation:

oy oy
—dx+v—dy=0,
0x oy y
in which shows that streamlines are parallel to the velocity vector field, u- V.
Another approach is to utilize the incompressible flow condition (Equation
2.34). When this condition is fulfilled, it implies the existence of a function v, as
described by equation 2.35. As a result, the stream function can always be defined

in the context of two-dimensional (2D) incompressible flows as follows:

u

dy = —vdx + udy. (2.38)
Since along a streamline dy = 0 so
dy v
—=—. 2.39
dx u (2:39)

Irrotationality

A fluid particle moving in a three-dimensional (3D) space, influenced by a ve-
locity field, can experience rotation due to viscous forces and variations in mass
density. To quantify this rotation, we use the concept of circulation (I'), which is
a scalar integral quantity. Circulation is defined as the line integral of tangential
velocity components evaluated along a closed curve. The magnitude of circula-
tion represents the total vorticity, meaning that the circulation around a closed
contour corresponds to the enclosed vorticity. Mathematically, the rate of change
of circulation, obtained through the Stokes’ theorem, can be expressed as follows:

DI' D .
—:—ff(qu)-ndS,
Dt Dt JJs

in which V x u is the vorticity.
Assuming a constant mass density and neglecting viscous forces, we can
deduce that

(2.40)

Vxu=0, (2.41)

which implies that the flow is irrotational ({ = 0), meaning there is no vorticity
present. Assuming an incompressible, inviscid, and irrotational flow, it suggests
the existence of a function that satisfies the conservation of mass and momentum.
This function is known as the potential velocity function ¢, which is valuable
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as it reduces the velocity vector field to a single scalar function, introducing an
additional relationship to the problem:

__ 9%

=— . 2.42
Uuj ox; ( )

Lines of constant ¢ are called potential lines and represent points of equal
pressure. In a two-dimensional (2D) space, the expression for the potential
velocity function ¢(x, y) can be obtained by taking its derivative, similar to the
equation 2.36 for w(x,y). Consequently, as d¢p = 0 along a potential line, the

Incompressibility and Boussi-

expression simplifies to: nesq approximation
ﬂ _ E (2.43) While numerous books define an
dx v’ ) incompressible flow as
V-u=0,

Two-Dimensional Irrotational Flow . .
by employing the Boussinesq

approximation for mass conserva-
tion, it is possible to demonstrate
that the mean flow velocity, de-
noted as U, is

If the flow is irrotational and incompressible, equations 2.39 and 2.43 can be
combined, leading to

0 0

9 _ 9y (2.44a) Uy

ox ~ ay X o,
ap o l
% = —%, (2.44b) for many fluid flows.

In other words, even in a com-
pressible flow, V- (U) = 0.

The system of differential equations represented by equation 2.44 is widely
recognized as the Cauchy-Riemann equations in the field of complex analysis in
mathematics. In the context of fluid mechanics, this expression takes the form
of V¢ - Vi = 0, which means that the potential lines are perpendicular (normal)
to the streamlines. It is worth noting that stream functions are not exclusively
associated with irrotational flows; they can also be used in the analysis of other
flow conditions.

To illustrate the physical meaning of these lines, consider steady-state water
flowing beneath a dam in permeable soil (Figure 2.17). The flow in porous media
is governed essentially by Darcy’s law (Equation 2.45). The smaller the flow length,
the higher the flow rate. Thus, the shortest streamline in Figure 2.17 has a higher
velocity than the second and third.

The cutoff structure reduces the pressure of the uplift on the heel of the dam
and erosion on the toe. Without the cutoff point, the flow rate would be higher,
leading to stronger erosion on the toe. If the pressure stays the same but the path
gets shorter, the gradient increases, speeding up the fluid. This loop can cause
the erosion to reach the reservoir, leading to a dam failure.

Table 2.6 Incompressibility consid-
erations.
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Figure 2.17 Hydrodynamic flow net beneath a dam with an impermeable

Darcy’s Law cutoff.

Darcy’s law was formulated by
Henri Darcy in 1856 through a
series of laboratory experiments
to describe flow through granular
media. Darcy’s law states that the
flow rate is proportional to the
length of the flow, Ax, and the
total pressure drop, Ap:

Q= o Ax (2.45)
in which A is the cross-sectional
area of the flow, k is the hydraulic
conductivity and p is the viscosity
of the fluid.

Although the equation of fluid me-
chanics had already been formu-
lated, Henri Darcy did not derived
it directly from the Navier-Stokes
equation. Actually, upscaling the
Navier-Stokes equations for flow
through a porous medium turns
out to be an extra viscous term,

a drag force term, due to the vis-
cous friction of the fluid with the
walls of the porous medium. This
theoretical homogenization gives
Darcy-Brinkman equation.

Table 2.7 Darcy’s Law and the flow

through porous media.

2.2.2 Momentum equation

The principle of conservation of momentum asserts that the combined forces
acting on a fluid element result in a temporal change in its momentum. This
principle essentially applies Newton’s laws to fluid dynamics. The momentum
equations, also known as the Cauchy equations, describe the motion of any fluid
and can be expressed in a comprehensive form as follows:

Opu; Opuiu; . oT;;
L+ l. J =0(8i —2¢;jrwjur) + <l

£l , 2.46
ot 0x;j 0x;j ( )

in-which, g is the acceleration due to gravity, T;; is the stress tensor, and w; =
2esin (5) is the inertial frequency, where ¢ is the angular frequency of the earth
and ¢ is the mean latitude of the phenomenon. The stress tensor is defined as

T'-—(—a—P+A%)5~+2 05ij (2.47)
v dx,- axk Y o1 ax]- ' '
where P is the total thermodynamic pressure and, A and p are the dynamic
viscosity coefficients.

When the stress tensor S;j is written as a linear strain tensor rate (Newtonian
fluid),

1 ou i Ou;
ij= E( ox; a_xj)' 249

equation 2.46 reduces to the well-kown Navier-Stokes equation.
The left-hand side of the equation 2.46 represents the rate of change of mo-
mentum for a fluid particle, which must be equal to the sum of all forces acting
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on the fluid parcel (right-hand side of the equation 2.46). The rate of change in
momentum can be expressed using the incompressibility assumption (equation
2.34), leading to a simplified material derivative. Additionally, certain terms on
the right-hand side of equation 2.46 can be neglected as they have little impact
on the propagation of internal waves. In particular, based on the assumption of
incompressibility, the term involving viscosity A can be ignored.

Another term in the momentum equation that is frequently omitted is the
Coriolis force term. The angular speed of the Earth in equation 2.46 is directly
related to the Coriolis force, which deflects internal waves and affects their phase.
However, for small-scale processes, this term is often considered negligible. It
is worth noting that the Earth’s rotation can have significant effects on internal
waves, leading to the generation of internal Kelvin and Poincaré waves during
large-period motions. For now, we neglect the contribution of the Coriolis force,
but in Sections 6.1.5 and 6.2.6, we delve into the details of the Earth’s rotation and
its impact on wave acceleration.

Given all these simplifications, equation 2.46 reduces to the Navier-Stokes
equation,

ou; du;\ 0P 0% u; 5
Q(E‘i‘uja—xj)——a—xi'l'ggi‘i‘ua—x?, (2.49)
in which p = pv,,, where v, is the kinematic viscosity.

Equation 2.49 can be reduced even further by assuming an inviscid flow. In
this case, we find another well-known equation, the Euler equation:

ou; ou; opP
0 = +08i. (2.50)

— Y — | ==
ot Mox;) T o

Hydrostatic balance

In Section 2.2.1, we introduced the concept of hydrostatic pressure, which devi-
ates from the momentum equation in z-direction for a stationary system. How-
ever, in the presence of fluid motion, the dynamics of the flow can generate
additional pressure within the system. Therefore, the total pressure in the flow is
a combination of two pressures: the hydrostatic pressure p(z) and the dynamic
pressure p(x, t).

P=p+p. (2.51)

Following a similar approach as in equation 2.51, we can define the density of
the fluid by considering contributions from both hydrostatic and dynamic effects
as follows:

o= ﬁ + 0, (252)

in which p is the hydrostatic fluid density and p is the dynamic fluid density.
To simplify the analysis, it is often valuable to separate the hydrostatic and
non-hydrostatic contributions when deriving the governing equations of motion,
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such as equations 2.32 and 2.50. For instance, substituting equation 2.51 into the
Euler equation 2.50 in the z-direction yields the following expression:

(a—w+u-6—w)——i(—+ )— (2.53)
Olor ""ox;) T Taa\PTP)TPE '

Applying the hydrostatic solution, equation 2.24, we find

(0w+u_6w)_ op ©-7) (2.54)
O\or ""ox;)T 9z 0P '
in which p(x, £) is the non-hydrostatic contribution for the total pressure.
Substitution of equation 2.52 into the Euler equation 2.54, gives
ow ow J0p p

—tuUj—= (2.55)
ot ]axj 0z o

2.2.3 The vorticity on internal wave analysis

Although the density gradient in nature is typically continuous, numerous studies
adopt the use of homogeneous layers to represent stratified systems, as illustrated
in Figures 2.14 and 2.9. The real advantage of the layered model is that we can
make the irrotational flow.assumption. Consequently, a velocity potential can be
defined, resulting in a reduction of variables in the problem.

Although the layered model often provides accurate predictions in many
scenarios, it is important to note that in a continuously stratified environment,
the flow is inherently rotational. This distinction is one of the key differences
between surface waves and internal waves. Surface waves exhibit an irrotational
flow, whereas internal waves involve rotational motion. This contrast becomes
more apparent when we examine the vorticity equation. By taking the curl of
each term in the momentum equations, the vorticity can be expressed as:

0%, 0%k
or 7 ax;

=(Qp+2w )%+i£ a—Qa—P+v 00
T G 0% P ox, 0x,y | Oxj0x;

, (2.56)

in which the vorticity is generated by the second term on the right-hand side.
This term becomes non-zero when baroclinic effects significantly influence the
dynamics of the system, leading to the formation of internal waves. It serves as a
source of vorticity, indicating that a flow under the influence of baroclinic effects
is always rotational.

The first term on the right-hand side of equation 2.56 is called vortex stretch-
ing and tilting and is responsible for amplifying the vorticity, being more impor-
tant for turbulent analysis. The last term accounts for diffusion of vorticity as a
result of viscous effects. As we can note, for an inviscid flow, this term can be
neglected.

Indeed, it is important to note that, in an inviscid flow with baroclinic activity,
the second term on the right-hand side of the equation does generate vorticity.
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This implies that the irrotational flow assumption is not entirely valid for the
baroclinic mode. However, despite this limitation, the assumption of irrotational
flow still yields satisfactory solutions in numerous cases when studying internal
waves in lakes and reservoirs.

2.3 Introduction to turbulent flow

Turbulent flow is characterized by an unstable, irregular, chaotic, and seemingly
unpredictable motion that causes fluctuations in velocity, pressure, and other pa-
rameters (Figure 2.18). The classification of flow as laminar or turbulent is based
on the balance between viscous and inertial forces. When inertial forces outweigh
viscous forces, perturbations within the flow become intense and cannot be dissi-
pated by viscosity alone, resulting in flow destabilization. The Reynolds number
(Re) serves as a dimensionless quantity that is used to examine the flow pattern
and determine whether it is laminar or turbulent. It is defined as follows:

ulL

Re=—, (2.57)

Vu
in which u is the velocity of the fluid, L is a characteristic linear dimension, and
v, is the kinematic viscosity of the flow. When Re > 1000, the flow is classified as
turbulent.

> LIJ 1
Blaoc o o
— 2 W,

A S
Laminar flow B Turbulent flow

Figure 2.18 Tracer transport in laminar and turbulent flows. The streamline
v is parallel to the mean flow that has superposed a wide range of vortexes
with different scales.
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Turbulent mixing plays a crucial role in the dynamics of stratified fluids. In
thermally stratified lakes, mixing processes arise from various sources. Small-
scale mixing originates from the breaking of internal waves. At the same time,
substantial turbulent mixing occurs in the presence of shear instabilities near the
bottom boundary layer, turbulent plumes, and gravity currents. Furthermore, the
interaction between deflected isopycnals caused by internal wave motion and
bathymetry can also contribute to turbulent mixing (Figure 2.19). These mecha-
nisms collectively shape the intricate patterns of turbulent mixing in thermally
stratified lakes.

A key feature of turbulent flows is the presence of a broad spectrum of spatial
and temporal scales. As depicted in Figure 2.18, turbulent flow consists of eddies
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Figure 2.19 Turbulent mixing in a
submerged ridge.

ranging in various sizes. Some eddies are comparable in magnitude to the overall
flow width, while others are so minuscule that they cannot be visually discerned.
It is worth noting that as the Reynolds number increases, the turbulence length
scales of the flow become smaller. This relationship highlights the intricate
multiscale nature of turbulence.

The size of the eddies plays a crucial role in characterizing the turbulence
field. Initially, the turbulence kinetic energy (TKE) is predominantly concentrated
in large-scale eddies, influenced by the flow geometry and boundary conditions.
During this stage, the inertial forces outweigh the viscous forces, rendering the
influence of viscosity negligible. These large-scale eddies govern the mixing and
transport processes within the flow.

Large eddies, formed through non-viscous processes, exhibit length scales
that are comparable to the overall flow scale, ranging from ¢, to Z.. This range is
called the production range, since it is where turbulent kinetic energy is primarily
generated (Figure 2.20). The Reynolds number associated with these largest
eddies (Re,) is typically large and similar in magnitude to the Reynolds number of
the overall flow (= Re). Due to the negligible effects of viscosity, the transfer rate of
kinetic energy from large eddies to smaller eddies is independent of viscosity and
is solely determined by flow parameters, specifically expressed as 1>/, where
u, denotes the characteristic velocity (= u(¢,) = U).

The interaction of large-eddies leads to a cascade process in which energy is
transferred from larger scales to smaller scales. This phenomenon, known as the
nonlinear vortex stretching process, can be observed in the vorticity equation
(Equation 2.56). As large eddies break down, they generate smaller eddies through
this nonlinear process. These smaller eddies subsequently undergo a similar
breakdown, transferring their energy to even smaller eddies. This energy cascade
continues until it reaches the smallest scales of turbulence, where dissipation
occurs-due to the influence of viscosity.

/EE ﬁ \*D\DR DICRSE
oS
\//\///__\;

C Production range Inertial subrange Dissipation range
( I I T T

lo le Uy n

Figure 2.20 Length scales in turbulent energy cascade. The example shows
the size of the separated eddies along the flow field, but the region occupied
by the large eddies can also contain smaller eddies.

A significant portion of the kinetic energy generated by large eddies, approxi-
mately 90%, is transferred to smaller scales within the turbulence. In the range of
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eddies with turbulence length scales between ¢, and ¢4, the energy exchange be-
tween large and small eddies reaches equilibrium. This specific range is referred
to as the inertial sub-range. In this sub-range, the energy input from large eddies
is balanced by the energy transfer via inertial forces to smaller turbulence length
scales.

As the eddies become smaller in size, the viscous shear stress intensifies
because the viscous forces become relatively larger compared to the eddy size.
Consequently, this increased friction causes the dissipation of turbulent kinetic
energy, converting it into heat energy. The range of the smallest scales where this
dissipation occurs is called the dissipation range. This range has a characteristic
turbulence length scale ¢, which is determined by the viscosity of the fluid:

0)e
Reﬁu() ,
Vu

in which Re;, « Re,, and consequently, viscosity plays a major role in energy
dissipation at this scale. The turbulent kinetic energy dissipation can be defined
as

up)?

e=vy|l—|, (2.58)

n
in which u; = (v is the Kolmogorov velocity scale and 7 is the Kolmogorov
length scale, the microscale of turbulence. Often n varies from 1 to 10 mm. The
Kolmogorov cutoff frequency is on the order of 10 to 100 Hz. The transfer of
turbulence energy across various scales, as shown in Figure 2.20, can be effectively
described by the turbulence spectrum. The turbulence spectrum provides insight

8)1/4

into the distribution of turbulent energy with respect to different length scales.

Typically, the length scale is characterized by the wavelength k, while the energy
associated with each scale is represented by the spectral density of the turbulence
(Figure 2.21). The turbulence spectrum enables us to analyze and understand the
distribution and behavior of turbulent energy across different scales within the
flow.

A

production
range

dissipation
range

E(k)10g

inertial subrange

itog

Figure 2.21 The turbulence spectrum (energy cascade).
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Figure 2.22 Small eddy size to re-
solve in a relatively large grid. To
resolve this turbulence scale, the
grid must be much smaller.
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Figure 2.23 Mean flow that can
be resolved and turbulence scales
that need to be modeled.

As discussed earlier, equations of motion are often simplified to a level where
analytical solutions can be obtained. For example, when the Cauchy equation
(Equation 2.46) is simplified to the Euler equation (Equation 2.50) under steady
and irrotational assumptions, we can easily derive an analytical solution known
as Bernoulli’s equation. In Chapter 6, we present the analytical solution for a free
surface and an interfacial internal wave using the unsteady Bernoulli equation
and the conservation of mass for an irrotational flow. In this scenario, a potential
velocity can be defined, facilitating the analysis and solution of the problem.

In fact, analytical solutions are feasible only for simple flow conditions. How-
ever, in many practical cases involving complex bathymetry, irregular boundary
conditions, and unsteady flows, the governing nonlinear partial differential equa-
tions cannot be solved analytically. Instead, computational fluid dynamics (CFD)
methods are employed to obtain numerical solutions. CFD tackles the problem
by discretizing the governing equations using techniques such as finite difference,
finite volume, or finite element methods. This discretization divides the flow do-
main into small control volumes or cells. Each cell is then treated as an algebraic
problem, typically solved iteratively, and the solution is obtained by solving the
resulting system of equations across the grid of cells. This numerical approach
allows for the simulation and analysis of a wide range of complex flow scenarios
that lack analytical solutions.

Undoubtedly, turbulent flows pose significant challenges due to the limita-
tions of simplifications typically employed in laminar flows. The presence of
eddies in turbulent flows requires the consideration of three-dimensional flow
behavior, deviating from the two-dimensional assumptions often applied in lam-
inar flows. Furthermore, the wide range of spatial and temporal scales present
in turbulent flows adds complexity to the problem. As mentioned above, as the
Reynolds number (Re) increases, smaller eddies form, leading to finer spatial and
temporal scales that must be resolved to accurately capture the complete flow
field. This requires utilizing a finer grid and smaller time steps to achieve a satis-
factory solution (Figure 2.22). These computational requirements underscore the
inherent computational challenges associated with simulating turbulent flows.

Indeed, the smallest length scales in turbulent flows can be on the order of
millimeters or even smaller. Consequently, the grid used to solve the flow field
must be smaller than these smallest turbulence length scales. When the entire
flow field is solved using a grid refined to be smaller than the smallest turbulence
scales, it is termed a Direct Numerical Simulation (DNS). DNS involves directly
simulating the flow by resolving all relevant scales of turbulence. However, the
main drawback of DNS is its high computational cost. Even at low Reynolds
numbers, the computational requirements are extremely demanding, exceeding
the capacity of even the most powerful computers available today.

To address the computational challenges associated with resolving the en-
tire range of turbulence scales, a commonly used approach is to separate the
time-dependent turbulent velocity fluctuations from the mean flow velocity and
assess the impact of these fluctuations on the flow. This technique is known
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as the Reynolds Averaged Navier-Stokes equation (RANS). RANS allows for the
estimation of the mean flow by considering only the mean flow components
while accounting for the potential influence of turbulent velocity fluctuations on
the mean flow. By performing algebraic manipulations of the Reynolds-averaged
Navier-Stokes equation, we can analyze how the velocity fluctuations affect the
mean flow. This analysis then serves as a basis for modeling the influence of
turbulence on mean flow, enabling simulation of turbulent flows with reduced
computational requirements compared to direct simulation methods.

The presence of a wide range of eddies in turbulent flows introduces addi-
tional spatial and temporal fluctuations, resulting in enhanced mixing and energy
dissipation. The fluctuations of a generic quantity in a turbulent flow exhibit vari-
ations over space and time, and a significant portion of this variation is attributed
to stochastic processes arising from the eddies. To analyze these fluctuations, the
Reynolds decomposition technique is commonly employed. Through this decom-
position, a quantity y; can be split into deterministic and stochastic components,
such as:

Xi (X, 59) = Fi(xi, 0 + x5 (xi, 1 9), (2.59)
in which y; (x;, f) indicates the deterministic component of y; and X; is the fluc-
tuation due to stochastic processes of turbulence, a function of g that belongs to

the sample space B. The expected value of this random variable y; is intuitively
given by the average of y;. Mathematically, we can write

Xi(xi, 1) = BXi(xiy 5 9) dP(p) (2.60)
PE

in which P is the probability density function. Note that if the mean flow is steady,
X is a constant over time (Figure 2?).

Now, by applying the Reynolds decomposition (Equation 2.59) to the averaged
mass conservation and considering the property that the average of a sum of
derivatives is equivalent to.the sum of derivative of the averages, we can express
the the mass conservation equation as follows:

ap . 0p (u; + u) o
ot 0x;

Applying the product rule and considering p constant, we have
@+5p(7i+u§-) o,
ot 0x;

=0
o0 ;. OpH.
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If you require further clarifi-
cation on the mathematical
manipulation between the
averaged terms, please refer
to exercise 2.7 for a detailed
step-by-step explanation.

Large eddy simulations

An alternative approach to both
RANS and DNS is the Large Eddy
Simulation (LES). LES lies between
RANS and DNS and is based on
the concept of filtering. In LES,
the method involves filtering out
the larger eddies and directly re-
solving them using the governing
equations, while the smaller tur-
bulence length scales are modeled
similarly to the RANS technique.
In other words, while the LES
method still requires a refined
temporal and spatial grid to cap-
ture certain turbulence-length
scales, the smaller scales can be
effectively modeled, reducing the
computational requirements com-
pared to DNS. The LES method
strikes a balance between accu-
racy and computational efficiency,
making it a valuable tool for simu-
lating turbulent flows.

Table 2.8 A Third optional to solve
tubulence problems.

Dp  0u;
— +p—=0,
Dt p 0x;
which since p is constant in time and space, we obtain a similar expression
obtained for the non-averaged equation (equation 2.32),
ou;
—=0. (2.61)
6x,-

The subsequent step involves applying the Reynolds decomposition to the
averaged Navier-Stokes equation. To facilitate the analysis, it is advantageous to
consider each term of the equation separately.

Firstly, the transient term can be simplified to

I
ul.—O

Opu; _OpQui+u)) apu:i+ 0971‘/

or ot ot ot
Thus, we have
_Opui 2.62)
T :
The second term is the convective and nonlinear term defined as
Opuilty _ 0 (———~——
6—xj—6—xj(p(u,-+ui)(uj+uj)J—
= (o) + - (Wj' 0(ﬁf. (purad)
" ax; P ) " ox ax] U,
_ (pu,u )+ 9 (pu'.u’.). (2.63)
0x; 1 ax U

The pressure term is also decomposed by Reynolds decomposition. Thus, we
obtain the following:

=0
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that results in _
= op (2.64)
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The gravitational term remains unchanged because it is not decomposed.
Variables p and g are constants in our equation. The next term that requires the
application of Reynolds decomposition is the viscous term. Hence, by referring
to the Navier-Stokes equation, we obtain the following:

0 0 (_ 0 0 (—
a(ua(ul + u;)) = E(ua(u, + u;)),
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which, finally, we have

(2.65)

Reassembling the terms of the Reynolds Averaged Navier-Stokes equation
(equations 2.62, 2.63, 2.64, and 2.65) gives
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in which the second and last terms of equation 2.66 can be combined, leading to
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Reynolds stress

(2.67)

Please note that equation 2.67 resembles equation 2.49, with the exception
of the Reynolds stress term. This term signifies the influence of turbulence on
the alteration of mean flow. The Reynolds stress term represents the shear stress
generated by turbulence. In the case of internal waves, which typically exhibit
turbulent flows and therefore possess high Reynolds numbers (Re), they are
significantly impacted by this turbulence-induced shear stress. Consequently,
turbulent diffusion greatly exceeds molecular diffusion in this scenario,

oui < puu' (2.68)

K Gx] p iy ’

and consequently the shear stress caused by the friction of molecules may be
neglected.

The Reynolds tensor, R; j, may be written similarly to the strain tensor, equa-
tion 2.48, as o

pulz pul 1}, pul w/
Rij=|pv'u pv? pvw (2.69)
ow'u pw'v' pﬁ
in which the main diagonal is the variances of the velocities fluctuation, whilst
other terms represent the covariance of the velocities fluctuation.

Dividing the main diagonal by two yields turbulent kinetic energy (TKE) per

unit mass:

ke = g(ﬁ+ﬁ+ﬁ). (2.70)

The challenge of turbulence lies in the need to accurately model the Reynolds
stress, denoted as R;}, in a similar manner to how we model the viscous stress
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Sij for Newtonian fluids. These effects are not directly resolved in simulations.
The approach involves solving for the mean flow and incorporating a turbulence
model to account for the turbulent term that emerges from the averaged gov-
erning equations (Figure 2.23). It is important to note that in this method, all
turbulence length scales are modeled to capture the influence of turbulence on
the mean flow, without explicitly solving for each individual scale.
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Exercises

Exercises for 2.1 Stratified Fluids

P2.1 A researcher conducted an investigation into the relationship between
water density and oxygen content in two distinct effluents. For each
investigation, the investigator developed their own equations of state,
which were derived from a series of laboratory experiments. The equa-
tions of state rely primarily on polynomial functions that estimate the
water density of the effluents, with temperature being the main input
parameter for these polynomial functions:

Effluent A: p = —0.008372 +0.06617 + 1000.9
Effluent B: p =610"27%—-0.00757% +0.05077 + 1000.4

Considering that the temperature-oxygen solubility relationship is
given by
Ogo1 = 0.005772 — 0.38237 + 14.586,

neglecting the interdependence between dissolved oxygen and salinity,
we found the oxygen solubility in mg/1 for the maximum water density
in both cases. Also, what would you say about the difference between
each effluent.

PS: Estimate the maximum water density using a polynomial function
with two decimal places.

om 4

CH, T
Exercises for 2.2 Theory of Stratified Flows

. . . . . L. 0.5 mg/! 18°C
pP2.2 Consider a typical scenario of incompressible flow occurring in a three-

dimensional space (x, y, z), where fluid particles move in response to a
steady velocity field (u, v, w). The velocity gradient,

ov
ay

’

is necessary approximately zero? Explain your answer.

P2.3 A hypothetical reservoir of surface area of 3.3 km? has a high concen-
tration of methane (CH,) and is thermally stratified during summer
with a well-mixed hypolimnion. Given the strong variation in den-
sity, the thermocline presents a reduced vertical turbulent diffusion
(D =0.14 cm?/s). The reservoir has an inlet stream and an outlet, with Figure 2.24 Stratified reservoir.
a flow rate of 1 m®/s. The inflow does not contain methane. Assuming
that the conditions shown in Figure 2.24 represent steady state, how
much is the flux of methane to the atmosphere?

—



42

Chapter 2 Stratified Flows

P2.4

P2.5

Figure 2.25 Stratified reservoir and
Torricelli principle.

P2.6

P2.7

P2.8

P2.9

In a two-dimensional, the fluid velocity components are given by:

u=—awexp 0D and w=—jawexp

—kz+i(kx—wt)

Show that the flow satisfies the continuity equation and verify that the
flow is irrotational. If the flow is irrotational, obtain also the expression
for the velocity potential.

Torricelli’s theorem states that the speed, denoted by u, of a liquid
flowing under the force of gravity out of an opening in a tank is jointly
proportional to the square root of the vertical distance, represented by
h.

Now, consider a thermal stratified freshwater reservoir that extends
over a significant distance, as shown in the accompanying figure. The
reservoir is equipped with a dam that-has a gate near its base, posi-
tioned at a distance of h from the surface of the reservoir. Assuming a
stable stratification, apply the Navier-Stokes equation, with the gate
fully open, to find the velocity of the exiting water. Discuss the con-
tribution of stratification to water velocity and the limitations of this
application.

Show that for a Newtonian and incompressible fluid, the divergence of
the stress tensor is
52 u;

= Pvu_y
axi

in which v, is the kinematic viscosity, p is the water density, and u; is
the vector velocity.

Using equation 2.60 and considering E =11,2,3], E =15,4,3],¢;p; =
[13,3,4]1[4,7,81[6,9,11]], find a solution for the following statements

—
¢iﬁ J»
and
! R/
(Piﬁ j’
inwhich ¢b; and §; are vectors that present stochastic and deterministic
components.

Find the expression to describe the hydrostatic pressure along the
depth in a tank H deep, assuming an equilibrium position and a water
density p. Assume that the water surface may vary from the equilibrium
position followed by the function 7.

Considering the situation shown in figure 22, find an expression to
describe the distribution of hydrostatic pressure along the lower layer
assuming that { is an interfacial perturbation between both fluids.
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P2.10

Based on the hydrostatic pressure at the bottom of the tank from the
previous exercise (H = H; + H>), find the expression of the surface wave
in a fluid-density unstratified system p; to have the same pressure at
the bottom of the tank. Assume that the total depth of water is the
same in both systems.
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Chapter 4

Experimental Methods:
Laboratory, numerical and Field
Observations

Over several decades, numerous researchers have been working to study internal
waves and explore their significant implications in various areas such as mixing,
turbulence, water quality, and biogeochemical cycles within lakes and reservoirs.
Research has been carried out in the main three branches: field measurements,
laboratory experiments, and numerical modeling.

Field measurements have played a crucial role in unraveling the complex
nature of internal waves. By directly observing and collecting data from lakes and
reservoirs, researchers have been able to gain valuable insights into the behavior,
characteristics, and propagation of internal waves in natural settings. These mea-
surements often involve the use of high-resolution sensors such as thermistors’
chains and Acoustic Doppler Velocimeters (ADVs). These data enable scientists
to acquire detailed information about the vertical and horizontal movement of
water, as well as their temporal and spatial variability.

In addition to field measurements, researchers have led experimental stud-
ies in stratified tanks under controlled conditions to examine basin-scale and
high-frequency internal wave patterns. Laboratory experiments help overcome
the difficulty in interpreting natural phenomena in the natural environment. Al-
though experimental analyses contain an element of abstraction, they frequently
allow us to examine a specific phenomenon that is often inaccessible through
field observation due to the complexity and coast of the underwater measure-
ments and the presence of uncontrolled natural perturbations. In these controlled
settings, researchers can precisely manipulate parameters such as density stratifi-
cation, wave amplitude, and reservoir size, allowing for a deeper understanding
of the underlying physical processes.

Laboratory experiments also offer the opportunity to conduct detailed mea-
surements using advanced imaging techniques and sensors, enabling researchers
to explore intricate details of wave behavior that may be challenging to observe
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directly in the field.

Numerical modeling has emerged as a powerful tool in studying internal
waves, allowing researchers to simulate and analyze complex wave phenomena
in a computationally efficient manner. By employing mathematical equations
that describe the fundamental principles governing fluid dynamics, numerical
models can recreate realistic scenarios and provide quantitative predictions of
the characteristics of internal waves. These models take into account various
factors, such as bathymetry, stratification profiles, and external forcing, to sim-
ulate wave generation, propagation, and interactions. Numerical simulations
not only aid in interpreting field measurements and laboratory results, but also
enable researchers to investigate scenarios that are difficult to replicate in real-
world settings, contributing to a comprehensive understanding of internal wave
dynamics.

By combining insights from field measurements, laboratory experiments, and
numerical modeling, researchers are gradually unraveling the intricate nature
of internal waves and their far-reaching implications (). These interdisciplinary
investigations serve as the foundation for advancing our understanding of mixing
processes in thermally stratified lakes and reservoirs.

4.1 Laboratory experiments

However, before introducing the technique used to study internal waves in labo-
ratory experiments, we devote the first subsection to exploring and reviewing the
well-known theory of dimensional analysis, which is extremely useful to make
comparisons between internal waves excited in small-scale experiments and real
lakes.

4.1.1 Dimensional Analysis

Dimensional analysis offers a method to reduce the complexity of a physical
problem, by looking at the relationships among the quantities that characterize
the problem studied, reducing the number of experimental variables. In ad-
dition, the dimensional analysis provides the scaling law, which evaluates the
equivalence between two phenomena that are actually different. Our goal here
is not to provide all details about dimensional analysis but to draw attention to
the importance of dimensional analysis on the study of internal wave propaga-
tion in controlled environments. For more details and a precise description of
dimensional analysis and scaling law, the reader should refer to book by 2.

Governed parameter

Suppose that we are interested in a governed parameter a; that can be deter-
mined by n governing parameters a;, in which k is the number of independent
dimensions. This means that parameters between a; and a; cannot be expressed
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as a product of powers of dimensions of other members,
g(aly"'rakr"'yan)zo- (4]-)

However, the parameters of n — k can be expressed in terms of the dimen-
sions of the independent parameters, ay, - -+, a;. Mathematically, the system of
dimensions (k x (n — k)) is given by

lars1] = [al]Pkﬂ [ak]rk-v-l
l[ar+i]l = [gl]pkﬂ' [dk]rk” (4.2)
lanl = [alP" - lagl™

Dimensionless parameters

From system 4.2, we can define non-dimensional groups I1; based on indepen-

dent governing quantities:

Afe+i
= e -
1 k

where i varies from 1 to n — k, which is the number of parameters that can be
expressed as product of power of the dimension of the independent parameters,
varying from ag.; to a,.

From equation 4.1 and 4.3, we have

k
flar-agM;af") =0 4.4)
Substitution of equation 4.4 into equation 4.1 gives the non-dimensional equation
Eé(l_[]_; rHI’l—k) :0) (45)

in which ¢ is a general function of the non-dimensional parameters II, that are
constructed from a; by n — k dimensionless equations. Equation 4.5 may be
expressed as

N=a"--a," (4.6)

where the exponents m are rational numbers.

This equation lead to the II-theorem, also known as Buckingham theorem.
If there is a physical law that may be written as a relationship between dimen-
sional variables and several dimensional governed parameters, the relation can
be reduced through dimensionless products of quantities, in which the number
of products is equal to the difference between the total number of governing
parameters and those with independent dimensions (?).
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Selection of IT products

¢ The dependent variable
should not appear in more
than one non-dimensional
product;

¢ Controllable variables
should appear in only one
dimensionless product to
keep a reasonable experi-
mental control;

¢ No two repeating variable
can have the same dimen-
sion in a Il group (However,
in the end of the analysis,
these variables must be
included as a IT product).

* Justkeep in the analysis
really important variables,
ignoring those that has
minor impact on the pro-
cess over the range being
examined;

e Standard dimensionless
products are useful. Try
to manipulate the expo-
nents to obtain them in the
IT products.

Table 4.1 Some considerations
about the selection of I products
variables

Example

Consider a breakwater built at near the coast to protect a coastline from wave
attack (Figure 4.1). The important variables to design the appropriate weight of
the rip-rap armour, Fg, are: water density, p;, wave amplitude, a, wave period,
T, gravitational acceleration, g, slope of the breakwater, ©, and density of the
rubble-mound material, p;.

| ..

—

Figure 4.1 Breakwater near the coast to protect a coastline from the water
attack.

Firstly, we can arrange the variables into a dimensional matrix given as

pp a T g ps Fs
M 1 0 0 O 1 1
L -31 0 1 -3 1 4.7)
T 0 0 1 -2 0 -2

note that the angle of the breakwater is already dimensionless. This dimensionless
variable must be included into the non-dimensional products, even through it
can be left out of the dimensional analysis. From 4.7 and using the definition
expressed by equation 4.6, we have that

M=p"a™ T g p " F" (4.8)
which shows that there are 6 governing parameters and just 3 independent di-
mensions. This means that there are 3 (n — k = 6 — 3) non-dimensional groups.
The theorem allows different combinations of variables to form different dimen-
sionless products, and does not provide any indication of importance between
products and variables. Thus, for each IT group must have a number of variables
equal to the number of dimensions. Table 4.1 presents some considerations to
chose correctly variables to the non-dimensional products.

From 4.7 and 4.8 we have

From M: my + ms + mg =0
FromL: -3my+me+my—3ms+mg = 0 (4.9)
From T: mg —2my —2mg = 0

Taking the advice from Table 4.1, we can define the first IT group as a function
of the dependent variable F;. We also can set m; = 0 and ms = 0. Thus, from
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equation 4.8 and 4.9, the first non-dimensional product is defined as

Fs

W. (4.10)
N

I = pya>T0g ' p; ' Fo=

The second group can include the wave period, since it has not appeared in

the first group. Setting m; = 0 and mg = 0 (since the F; should appear in only one
product),

M =pla g pdF T = \/% T. (4.11)

The third group is formed through the variables with the same dimension,
water density and armor material density,

&

= p; T8 Fopy =

(4:12)

Finally, the non-dimensional representation of the problem has the form

F
s :%(\/ET,&,G) 4.13)
agps a’p

in which O is an additional non-dimensional group.

Through equation 4.13, the relationship between all IT groups can be tested
experimentally through laboratory experiments to predict how F; varies due to
the variation of the non-dimensional groups.

4.1.2 Setup and Wavemaker

Frequently investigation of internal waves under controlled conditions are con-
duced in Plexiglas rectangular tanks of different sizes. Normally this studies are
carried out in tanks that vary from 3 to 21 m long. The tank height and width
normally vary from 0.1 to 0.6 m. Although density gradients in nature are always
continuous, greater amplitude internal waves normally arise near the region of
rapidest change in water density, region called pycnocline. Thus, many studies
have investigatedthe interfacial wave that propagates in a stable two-layer sys-
tem, in which upper and lower layers are completely homogeneous and present
small density difference (Figure 4.2). Many studies investigate experimentally the
propagation of interfacial solitary waves in a two-layer system (222). Laboratory
investigations also have studied the propagation of basin-scale internal waves in
continuous stratified rectangular thanks (Boegman et al., 2005b).

There are a number of methods to create a two layer system in rectangular
tank. Often, the tank is filled with liquids as carefully as possible to achieve small
thickness of the intermediate transition layer H,, (?). A large H,, modify the
internal wave structure and a simple two-layer model fails to reproduce greatly
the system dynamic. To generate the two-layer stratified system with a small Hy,,
the lighter fluid is added in a first step, whilst the denser one is injected slowly
underneath the upper layer in a subsequent stage. To a better visualization, a dye

Observed density profile

= = = Two-layer system (approximation)

Figure 4.2 Hypothetical profile of
water density and an approxima-
tion to a two-layer system.
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“F Video HTB 3.1

“F Video HTB 3.2

can be applied in the denser fluid before the injection. To minimize the thickness
of the density layer transition (Hy,), a low flow rate of the density fluid isa required.
The flow rate can be increased just when the interface is completely formed and
far from the injection region.

There are also other techniques used to create a two-layer system. The tank
can be filled firstly with denser fluid, whilst the lighter fluid is injected slowly
through a floater, just above the denser fluid (Hutter, 2011).

Watch the video How to build 3.1 available on the supplemental material to
understand how to build a two layer system in a rectangular tank.

To simulate the hydrodynamic of shallow basin, which the metalimnion takes
up a relatively larger proportion of the total lake depth, a two-layer system can
be created through the lock-exchange procedure, explained in details in section
?2. The strong perturbation may create a thicker intermediate layer. Often, for
experiments that tend to avoid a large interface thickness, h,,/ H <0.15.

Evidences have shown that, considering a system with finite intermediate
layer (h,,/H = 0.2), after the interaction between internal solitary wave and
submerged obstacle there are a excitation of higher mode of transmitted and
reflected internal waves (2).

Through the advance of technologies to measure and visualize stratified flows,
more complex studies have investigate internal waves in continuous stratified
fluid, often through a linear stratification. A detailed historic review of laboratory
experiments in continuous stratified fluid is given by 2. A linear stratification is
normally achieved through the double-bucket method. This technique have been
described in details by ? and basically consists of two large vessels at equal height,
one filled with salt water and another with fresh water, connected with a U-tube,
initially closed through a clamp. Using the Bernoulli principle, the two-buckets
can be positioned in a determined height position in relation to the main tank,
the one that we want to create the linear stratification. The pipe can be placed in
the salt water bucket to conduce water into the main tank. To better control the
flow rate, a pump can be used (Figure 4.3).

stirrer

fresh water bucket salt water bucket

Ly

Figure 4.3 Schematic diagram of apparatus and set-up used to produce a
linear stratification using the double-bucket technique.

main tank

The initial density of the seawater bucket is defined as our required maximum
water density, the water density of the tank bottom. In addition, to avoid salt
water rushing into the fresh water tank when we remove the clamp, for each gram
of salt added on the salt water bucket, one gram of fresh water must be added to
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the fresh water bucket.

When the pump is switched on and the clamp is removed, pump draws salt
water from the salt water bucket to the main tank. To keep the water levels in
both vessels, part of the water flows through the U-tube to the salt water bucket,
reducing the relative salt concentration. As the processes continues, the water
flowing out into the tank gets gradually fresher, creating a linear stratification.

To avoid mixing and turbulence on the water surface, the fresher water should
be spread out above the salter water by a sponge. inject the water in the main
tank (Figure 4.3).

To provide a direct visualization of the stratified system and enhance the
visibility of mixing events, colored dyes can be introduced periodically to the
floater during the filling procedure. This technique provides a good qualita-
tive visualization of the diapycnal mixing (2). However, the advancement in
computer-controlled devices has allowed the development of new non-intrusive
measurements, which provides a efficient quantitative analysis. The synthetic
Schlieren technique is one of the most applied methods to analyze stratified-flows
and described in details in section 4.1.3. The technique is based on automatic
processing of optical distortion of images caused essentially by density difference
.

4.1.3 Synthetic Schlieren Technique

Many laboratory experiment that studies the propagation of internal waves in
stratified system have been conducted in laboratory tanks colored by dye, in
which dye is applied in each interface, and the wave propagation is visualized
easily (). However, according to ?, the advancement in lasers and computer-
controlled devices have created valuable new non-intrusive measurements such
as particle image velocimetry (PIV), laser-induced fluorescence, shadowgraph,
and the synthetic schlieren technique.

In this section we pay a particular attention to the technique based on tradi-
tional schilieren method to visualize stratified system. Internal waves and other
motions that occurs in a stratified media made by the same fluid but with differ-
ent properties (e.g. temperature, salinity, pressure), does not present an evident
difference in color, however, due to the density difference, the refractive index of
the media may vary, refracting or bending light rays differently. The difference in
refraction is not easily detected by the human eyes and ordinary camera, but can
be evidenced by simple optical techniques.

The technique described in this book is a low-cost version () of the traditional
schilieren method which requires professional or DSLR cameras and has been
used by many authors to investigate the dynamic of internal wave and other
movements in continuous stratified fluids (). The simple technique described
here has been proposed by () and generated background-oriented schlieren (BOS)
images through Schlieren and shadowgraph techniques using simple smartphone
imaging and basic accessories and materials.

Non-traditional schlieren tech-
nique limitations

Traditional schlieren methods
project a light beam into the cam-
era lens. Smartphone cameras has
a tiny aperture which ...

Table 4.2 Limitations.
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differential voltage

<

" copper lead

Figure 4.4 Thermocouples operat-
ing principles.

4.2 Field measurements

4.2.1 Measurement Devices

The study of the hydrodynamics of stratified lakes is often a challenging task, as
it involves many different physical processes that can influence water masses,
heat, and biogeochemical transport. The hydrodynamics of these observation
motion in these environments is not possible through a dyed layer or the syn-
thetic Schlieren technique, commonly used in controlled settings. In lakes and
reservoirs, the prediction of water motion requires the utilization of different
fast response sensors. Typically, the motion of stratified flows is predicted by
analyzing the variations of temperature, pressure, and salinity, as these variables
are responsible for the stratification of the water density: In addition, advances
in technology have allowed for a better understanding of stratified flow patterns
through the prediction of water velocity fields.. Furthermore, modern fast re-
sponse water quality sensors can be utilized to assess the impact of motion on
water quality in stratified fluids.

Although nowadays many fast response sensor are available in the market,
one of the simplest method to analyze the water quality and some important
property is through the Van Dorn Water Samples 22. The Van Dorn water sampler
is a horizontal transparent acrylic tube with double releaser, which can be closed
by the operator when it reaches the desired depth, insuring a representative water
sample at required depth. Some Van Dorn water samplers models have sensors
coupled to the device, such as thermometers and pressure sensors.

Although Van Dorn Water sampler is an efficient probe for sampling water
at different levels depth, the submerging process may cause disturbance during
the water sampling. Nowadays, there are many stationary instruments available
in the market to predict the hydrodynamic os stratified fluid and evaluate their
effect on the water quality. In the next section we present in more details some
sensor capable to describe the motion of stratified fluids. To measure directly the
field velocity of the water, one of the most used devices are: Acoustic Doppler ve-
locimetry and Acoustic Doppler current profiler. There are also other alternatives
since sensors based on Doppler principle are relatively expensive. To predict the
dynamic of stratified fluid, many times we measure the variables that influence
the stratification. As discussed earlier, temperature, pressure, and salinity. In
this section we present some sensor used to measure some of this variables. In
addition, we present a multi-parametric sensor extensively used in the study of
stratified fluids and low-cost sensors, which can be easily developed to better
understand the system dynamic.

Temperature Sensors

Temperature can be measured by many devices, such as infrared and liquid
in glass thermometers, thermocouples, resistive temperature devices (RTDs),
thermistors, and semiconductor IC. Trade-offs amongst devices include accuracy,
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sensitivity, cost, operating temperature range, and stability, which influence the
output signal drift over time, and consequently the need for repeat calibrations.

Liquid-glass thermometer is the most popular device to measure temperature.
Mercury thermometers, which was invented in 1714, consists of a bulb containing
mercury attached to a narrow glass tube, in which depending on the temperature,
the mercury expands or contracts. Based on thermal radiation principle, infrared
thermometer is also an option to measure temperature. However, since this
type of thermometer is based on the amount of infrared energy emitted by a
determined object, it can only measure the surface water temperature.

Thermocouples are devices to measure temperature by measuring a change
in voltage, a result of the Seebeck effect (Figure 4.4). Whenever there is a tempera-
ture difference along two wires, there is also an electric potential difference that
generates a magnetic field, and consequently the compass is moved to indicate
the temperature. The magnitude of this electric pressure depends on the wires
material. The relationship between voltage created by the conductors and tem-
perature is known for a large number of conductor pair, and have been largely
documented (Taylor, 1997). Even though thermocouples have a very fast response
to temperature changes, voltage signal in a majority of cases is nonlinear. They
are susceptible to corrosion and have worse long-term stability and accuracy than
the resistive devices.

Resistive temperature devices (RTDs), also called resistance thermometers,
are devices to measure temperature based in resistance change, and have a
positive temperature coefficient. Most RTDs devices consist of fine coiled wire
wrapped around a ceramic core. Usually, the wire is made of pure metals such as
nickel, platinum, and copper. These devices are classified according to metal that
are used in their composition.

In the same way of thermocouples, RTDs have been largely documented ac-
cording to a large range of wires. RTDs are typically protected by a sheathed probe
since their elements are relatively fragile. RTDs provide an excellent long-term
stability. In the similarly way of thermocouples, resistance thermometers can be
affected by corrosion, converting the metal element from its pure form to a metal
oxide, which will tend to increase the wire resistance. When RTDs are made with
platinum, they are not susceptible to be affect by corrosion or oxidation. However,
Platinum resistance thermometers may be really more expensive. In addition,
although RTDs show an almost linear resistance-temperature relationship, the
temperature coefficient is really low (Herman, 2011). As a result, it does exhibit a
low change in resistance over a large change of temperature.

Another resistive device used to measure temperature is known as a ther-
mistor (portmanteau of thermal and resistor). Thermistors are made of ceramic
or polymer instead of metals, and have much higher temperature coefficients
than RTDs. Their resistance varies dramatically over some temperature range,
and are considered one of the most sensitive devices to measure temperature,
with sensitivities in the range of 3 to 6% (Figure 4.5). Thermistors are ceramic
semiconductors made from metal oxides which have an electrical resistance that

800
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50 100 150
Temperature (°C)

Figure 4.5 Resistance versus tem-
perature for Platinum RTD and
Thermistors.
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Figure 4.6 Waterproof DS18B20
temperature sensor and Arduino
UNO R3.

decrease with temperature. Although thermistor can achieve great precision, the
temperature range is limited.

The last type of sensor discussed here is the 1-Wire digital temperature sen-
sors, which offer several valuable features such as linearity, high sensitivity with
9 to 12-bit precision, and small size. These devices are based on relationship
between the base-emitter voltage and the collector current of a bipolar transistor.
They are inexpensive, require no linearization, and can be interfaced directly on
micro-controllers, such as an Arduino Uno. In section 4.4, we provide a guide of
how measure continuous water temperature from a waterproof DS18B20 temper-
ature sensor (= $12) using a Arduino Uno R3 (= $20) (Figure 4.6).

Thermistor chain

In those early years after the observation of underwater temperature fluctuation
(Watson, 1903), Wedderburn and collaborators' provided guidelines to spread
the knowledge about internal seiches in stratified basins through the first simulta-
neous recording of water temperature (with just one single point in depth) using
a underwater thermograph. However, even after continuous water temperature
measurements in a single point, many limnologists disbelieved that internal wave
could be important or even exist within thermal stratified lakes.

The phenomenon was doubted until 1952, when finally Mortimer (1952)
demonstrated their universality and importance using a thermistor chain, a pow-
erful device for continuous water temperature measurements at selected depths
(Figure 4.7). Nowadays temperature measurements collected from thermistor
chain are still the most common data analyzed through detect internal waves in
stratified basins of fresh-water (Hutter, 2011).

The thermistor chain frequently is placed in buoy stations, also called moor-
ings, which keep instruments in a specific submerged position. The surface buoy
is usually equipped with a data logger, which is responsible to recover sensors
data.” To avoid movements and rotations due to internal and external forces,
ball-bearing swivels, anchors and rope are often used on the surface and near
the basin bottom. The thermistor chain is a long electrical cable containing tem-
perature sensors and connected to batteries and a host logger systems (Figure
2.8). Since internal waves can be excited in different depths, a several quantity
of temperature sensor along the vertical coordinate is essential. In spite of the
fact that a good spatial resolution is crucial for internal waves investigation, for
low-frequency waves of order of several hours, a low temporal resolution is not
required. Since most of time basin-scale internal waves have order of several
hours, generally data collection has order of minutes. ? investigated basin-scale
internal waves with period of = 8 h in a small dendritic reservoir through a ther-
mistor chain with temporal resolution of 15 min. On the other hand, to investigate
high-frequency internal waves (~ 1073 Hz), internal wave breaking, and shear
instabilities (~ 102 Hz), high temporal resolution for temperature sensor is cru-

IWedderburn, Williams (1911); Wedderburn (1912); Wedderburn, Young (1915)
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cial to capture these high-frequency thermal oscillations (Boegman et al., 2003).
Thus, the temporal resolution of the sensor must be in the same order of the
phenomenon that is investigated. Generally, the sample frequency must be twice
the maximum Brunt-Viisild frequency, Ny, 4y, and 4 times the average of N for
the vertical profile.

Velocity measurements

Although isotherms analysis have been used extensively to identify internal waves
and to predict the dynamic of thermal-stratified system (Mortimer, 1952; Miin-
nich et al., 1992), nowadays internal wave is also identified through sensors
capable to measure the local field velocity of the water. Acoustic Doppler Ve-
locimetries, developed in the end of the 20th century, and the Acoustic Doppler
Current Profile are much more expensive devices than those used to measure
temperature. However, the field velocity may present a direct indication. of the
dynamic of stratified system, with no secondary disturbances.

For example, imagine a water surface submitted to a constant wind event.
Daily variation of water temperature occurs essentially due to the daily heat flux
at water surface and water movement, which can be associated to water cooling,
internal waves, turbulence, among others.

Due to the surface heat flux, warmer isotherms are typically eroded near
the midday, when the solar radiation is more intense. This variation does not
represent a water motion, but just a change in ‘water temperature. The wind
that acts over the lake surface creates a mixing region that decrease the water
temperature located right bellow the water surface. This variation in temperature
can create a thermal instability that could promote a downward movement. This
motion is associated due to the density difference between colder water generated
by mixing at water surface. Figure 22 presents the isotherms and vertical velocity
of this hypothetical system. Note that the isotherm analysis is not so intuitive to
predict the motion of the system.

Acoustic Doppler Velocimeter

The Acoustic Doppler velocimeter was invented in the end of the 20th century. It
is based on the Acoustic Doppler Shift principle and measure the water velocity
in three dimension. The sensor has two main components: the acoustic sensor
module and the signal conditioning module (Figure 4.8).

The acoustic module is composed by one acoustic transmitter beam and three
receiver elements. The probe is submerged into the flow, where the transmitter
beam sends pulse of short acoustic waves. The pulse propagates through the
water. However, a fraction of the acoustic energy is scattered back by particulate
matters present in the sampling volume. The sampling volume is located approx-
imately 10 cm from the acoustic transmitter to avoid the flow interference. This
distance may vary slightly from probe to probe.

Temperature sensor

—

Figure 4.7 Thermistor chain.

Acoustic transmitter

1 Acoustic receiver

10 cm

Sampling volume

Figure 4.8 Acoustic Doppler ve-
locimetry (ADV).
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The three acoustic receiver detect the scatted acoustic waves originating from
the sampling volume. Due to the Doppler shift principle, the emitted acoustic
waves change in frequency. The Doppler shift observed at each acoustic receiver
beam is proportional to the field velocity of the water (2).

The signal conditioning module is responsible to control

Acoustic Doppler Current Profiler
Multi-parametric sensor

One of the most famous instruments developed for determining water properties
in lakes, reservoir, and oceans is known as CTD (an acronym for conductivity,
temperature, and depth) (Figure 4.9). Often this device is built with a fast response
Platinum RTD to measure temperature.

CTD device has a pressure sensor that measures the equivalent hydrostatic
pressure of the water above the sensor to calculate the total water depth. It is also
equipped with a conductivity sensor that measures true or specific conductivity. A

1 profiling CTD measurement is made when this device travels vertically though the
water. It is submerged until it hits the bottom. Many multi-parametric sensors
can make an average between the travel up and down to measure the profile
parameters.

CTDs have good spatial resolution, since are built with extremely fast response
sensors. However, usually itis operated manually and the time resolution of the
acquisition of each profile depends on the submerged time, what limits the
usage of these devices to detect internal waves. However, CTD measurements
are useful for calibrating the thermistor chain and providing information on
density dynamic of the system, since the contribution to density are not only
from temperature.

Figure 4.9 CTD - Crew of NOAA
Ship Miller Freeman (Source: Salinity measurements
NOAA/Department of Commerce)

In most lakes and reservoirs, density stratification is dominated by thermal strat-
ification, and consequently water density is controlled by water temperature.
However, in most hydrodynamic experiments, the heat transport cannot be con-
trolled. Thus, in most cases, experimental analysis of stratified flow is conducted
in a channel where stratification is caused by salt concentration difference, also
called salinity difference. In addition, it is worth pointing out that salinity may
also influence the dynamic of internal waves in ocean, estuaries, and salt lakes.
Salinity could be defined as the total concentration of all dissolved salts in
a solution. Since the number of dissolved ions per volume influence positively
water conductivity, which express the ability of electrons to flow through the
solution, frequently the salinity is directly correlated to conductivity. That is why
seawater has high conductivity, and consequently higher density than the fresh
water. Although the number of the ions increase in seawater, the system remains
electrically neutral. This phenomenon occurs when electrolytes dissolve in water,
they split into cations and anions, but the concentration of each atoms remain
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the same. For example, consider the electrolysis of water and sodium chloride
solution (NaCl), one type of salt. When the NaCl is dissolved in water, they are
separated into different ions, Na* and Cl~. In addition, the water molecules
undergo self-ionization, also called autodissociation, in which water molecule
are split into hydroxide ion, OH™, and hydrogen ion, H*.

NaCl — Na® +Cl~ (4.14)

H,O0 — H'+0OH" (4.15)

If the negative and positive pole of battery are connected through conducted wires
(electrodes) and they are submerged in water as shown in Figure 4.10, electricity
will pass through and between the electrodes. Thus, negative ions, anions, in the
solution will be attracted to the positive pole, anode, and vice versa.

However, the ionization process produces two anions and two cations: There
are two possibilities of semi-reaction of reduction (cathode side) and oxidation
(anode side), which depends on the preferential discharge of ions. Firstly, since
H™ is more electropositive than Na*, the semi-reaction that occurs in the cathode
is

2Hp0+2e” — Hy g +20H", (4.16)

whilst at anode, since Cl™ is more electronegative than OH™, the semi-reaction
that occurs is

2CI —>C12(g) +2e . 4.17)

Equations 4.16 and 4.17 is a oxidation-reduction (redox) reaction that involves
a transfer of electrons between two species, in this case, from catode to anode. In
other words, reaction 4.17 shows that the chloride ion is oxidized to chlorine gas,
transferring electrons to the anode. Whilst, hydrogen ions capture electrons from
the cathode to form diatomic hydrogen molecule.

The global reaction is obtained through equations 4.14, 4.16, and 4.17,

2NaCl+2H;0 — Hy(g + Cly (g +2Na* +20H", (4.18)

which Hy(g) and Cl,(g) are produced at the cathode and anode, respectively. The
2 Na®' and the 2 OH™ are combined to form 2 NaOH™~

This ability of electrons to flow is called conductance, expressed as G and
frequently measured in Siemens, S. Since conductance is the inverse of resistance,
which are measured in Q, sometimes the conductance is expressed in a reciprocal
form as U, that is equivalent to S. In this textbook we use the most common form,
in which is expressed with ’S’. The conductance is not a specific measurement
on its own, the measurement depends directly on the electrodes length, similar
with resistance. Thus, a larger electrode increases the contact area with ions, and
consequently rises the conductance.

The conductance is parameterized with the ratio between the conductors
distance, d, and the surface of electrode, A. This parameterization gives the

Battery

o/ )\
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Figure 4.10 Principles of water
electrolysis.

Pure water electrolysis
The electrolysis of pure water is a

decomposition of water molecules

into hydrogen and oxygen gases
due to the passage of an electric
current.

2H20+E— 02 +2H>

Actually, since pure water has a
very high resistivity (= 18 Q/cm),
it requires excess energy in the
form of overpotential to speed up
the electrolysis. In other words,
the ions concentration of OH™ is
extremely low to conduce rapidly
electrons. This means that any
applied potential is going to be
converted into thermal energy.
Note that tap water has higher

concentration of electrolytes, such

as sodium, potassium, and mag-
nesium, than pure water. Their
resistivity is = 5 kQ/cm, approx-
imately 1000 greater than pure
water.

Table 4.3 Electrolysis of water.
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Figure 4.11 Sketch of a conductiv-
ity probe and how is defined the
cell constant, K.

electrical conductivity, expressed as

d
x =G x Z, (4.19)

in which « is the solution conductivity given in uS/cm, G is the conductance
given in uS, and the ratio d/ A is the cell constant, K, expressed in 1/cm, Figure
4.11.

Conductivity meters are delivered with certified cell constants, K.e . The
choose of the best conductivity probe with a specific K. depends on the con-
ductance readings, and consequently on ions concentration. For a sample with
low conductivity, the electrodes can be placed closer or the surface area of elec-
trodes can be raised, which is the definition of a conductivity meter of lower cell
constant. The measurement accuracy is strongly influenced by the cell constant,
which needs to be selected appropriately for each application. Figure 4.12 shows
standard conductivity values for a set of samples and the range of recommended
cell constants for a given conductivity meter.

Tap Water Sea Water

20 Cell

10 Cell

1 Cell

1 I 1 I I I
10 puS/cm 100 puS/cm 200 pS/cm 10 mS/cm 200 mS/cm 400 mS/cm

Conductivity

Figure 4.12 Range of conductivity for three different cell constant. Pure
water has conductivity of approximately 0.1uS/cm.

The conductivity of a solution is measured through the potential difference
between the positive and negative pole. This measurement uses equation 4.19,
the principle of ohms law and the inverse relation between conductance and
resistance. Thus, the conductivity is given by the expression

_ Keell _ Keent
- - ]
Rsol Usol

(4.20)

in which Ry,; is the solution resistance, i is the electric current, and U, is the
electrical potential of the solution. Note that Ug,; is similar to AU, the difference
between the input and output voltage.

When the salinity is based on a direct comparison with the specific conduc-
tance of a solution (conductivity ratio), the salinity is called practical salinity
and is expressed in psu (practical salinity units), which is dimensionless (Forch
Knudsen Martin e, 1901). A useful summary of equations used to calculate salinity
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from electrical conductivity is presented by Fofonoff, Millard (1983). However the
application is restricted to the range between 2 and 42 psu.

Recently, a new description to estimate salinity have been proposed, which
introduced the term: absolute salinity. According to 2, differently from the spe-
cific salinity, measured through conductivity cells, the absolute salinity uses the
thermodynamic properties of seawater.

Described by Intergovernmental Oceanographic Commission, others (2015),
the new description of salinity is based on a Gibbs function, which represents
all properties of seawater in a consistent way with the thermodynamic state of
the system. Unlike specific salinity which has a unit in PSU, absolute salinity has
units of ppt (parts per thousand) or g/kg (mass fraction of salt in seawater).

4.3 Numerical models

4.3.1 Modeling of heat transport: Delft3D-FLOW

Although unidimensional internal wave models have been used to describe in-
ternal seiche patterns in thermally stratified lakes Lemmin, Mortimer (1986);
Miinnich et al. (1992); Roget et al. (1997); Vidal et al. (2005); Carvalho Bueno de,
Bleninger (2018), they have several simplifications and cannot be used to describe
the whole process of heat transport associated with the internal wave field. The
simplified multilayer internal wave model neglects horizontal variability, includ-
ing effects of inflows, outflows, heat transport, mixing, and interaction between
internal wave and lake bathymetry. These limitations cause fundamental prob-
lems to describe the hydrodynamic of lakes and reservoirs, especially when we are
concerned with the internal wave field, which has different spatial and temporal
scales, and an intrinsic three-dimensional nature.

With an improvement in computational performance, three-dimensional
models of heat transport have gained prominent research interest because they
are capable of simulating processes in lakes by solving the full continuity, mo-
mentum, and transport equations. As with all numerical approaches, three-
dimensional hydrostatic models also have several limitations, mainly related
to the turbulence aspect. Due to numerical diffusion and dissipation Hodges
et al. (2006) and the inability of hydrodynamic models to deal with nonlinear and
non-hydrostatic mechanisms, the energy fluxes must be investigated carefully,
especially the mechanism of internal seiche damping Shimizu, Imberger (2008).
ELCOM and Delft3D are among the most well-known three-dimensional models
to simulate the dynamics of shallow-water systems, such as coastal regions, reser-
voirs, estuaries, lakes, ponds, and rivers. The basin-scale internal wave affected
by Earth’s rotation has been greatly stimulated by ELCOM Hodges et al. (2000);
Valerio et al. (2012) and Delft3D Dissanayake et al. (2019); Carvalho Bueno de,
Bleninger (2019); Kranenburg et al. (2020); Baracchini et al. (2020). Recently, obser-
vation has shown that Delft3D and ELCOM are significantly trained in simulated
large-scale internal seiches in lakes, which agrees well with field measurements

Impact of temperature on con-
ductivity measurement
Conductivity depends on ions mo-
bility and electrolytes concentra-
tion, which means that is affected
not by salt concentration, but also
by temperature. As temperature
rises, the number of ions solution
increases due to dissociation of
molecules and also their mobility
in the solution, favoring the trans-
ference of ions between electrodes,
and consequently increasing the
conductivity. As stated by Gray
(2005), the relationship follows a
extremely nonlinear behavior for
natural waters, which implies that
anonlinear temperature compen-
sation method must be used.
Different methods of tempera-
ture correction have been devel-
oped. Generally, the conductivity
is measured by using a tempera-
ture compensation at a reference
temperature of 20 °C or 25 °C ,and
can be measured by

Ke = fe XK, (4.21)

in which «¢ is the conductivity

at the reference temperature e,

k7 is the measured conductivity
at temperature 7, and f; is the
temperature correction factor for
natural waters. A list of tempera-
ture correction factors is provided
by 2. Attention: Many current
conductivity meters has a temper-
ature sensor and, in this case, the
correction is automatically applied
and the conductivity is displayed
at a reference temperature. Some
conductivity meters also offer a
specific temperature correction
method.

Table 4.4 Temperature compensa-
tion.
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in Upper Lake Constance Dissanayake et al. (2019).

Now we focus on the description of the three-dimensional Delft3D-FLOW
model, which is the model used in this thesis to simulate the hydrodynamics of
the lake. In the next section, we present the model description, paying special
attention to numerical approaches that may limit the applicability of Delft3D
to investigate the internal wave field, trying to make the connection with the
physical description discussed in section 2. A full description of the model is
provided by deltares2003delft3d.

Delft3D is a multidimensional hydrodynamic numerical model based on
Reynolds-Average Navier-Stokes (RANS) under the Boussinesq approximation
and shallow-water assumption. The program calculates the unsteady flow and
transport phenomena of heat and matter due to tidal and meteorological forces
by solving the equations of mass conservation, transport, and horizontal mo-
mentum, using a turbulence closure model Delft Hydraulics (2003). The vertical
velocity field is obtained implicitly from the continuity equation.

Governing equations

The depth-averaged mass conservation equation is obtained by integrating the
equation ?? along the water column, taking into account the boundary conditions
at the water surface and lake bottom:

T ou; o [ on 0H
f —dz=—f uidz—uj(z=n—-—-uj(z=-H)— =0, (4.22)
_H 0x; 0x;J-nu X 0x;
in which n(x, y, £) -and H(x, y, t) are the water level (surface function) and bed
horizontal plane of reference, respectively.
Assuming that the bathymetry does not vary with time, we may rewrite equa-
tion 4.22:

o " on
—f udz—u;j(z=n—-—=0, (4.23)
0x; J-H Xi

in which n and H are the water level above and the depth below a horizontal
plane of reference, respectively.
The kinematic boundary condition at water surface (z = n(x, y, 1)) is defined

as
- - ) ,t - ) ) t
i:{xz xl,J/Z .VI’TI(JCZ V2, t2) —n(x1, )1 1)} 4.24)
At At At
Expanding n(xy, Y2, £2) in a Taylor series:
on(xy, ) on(y1, &)
n(x2, f2) = n(x1, £2) + (x2 —x1)% + ()2 —yﬂ%}z, (4.25)

and substituting equation 6.9 into the vertical component of equation 4.24, we
obtain 5 5 5
@m0 0n

, 4.26
ot ”ax ”ay (426
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in which u; = Ax;/At, where Ax; is the grid size of each component and At is the
time step.
Finally, substitution of equation 4.26 into equation 4.23 gives

a_’7+i(u.( +H)):O 4.27)
ot ax; |1 ‘ ‘

In Delft3D an additional term of source and sink per unit of area is added to
equation 4.27 to account for the contribution of inflows and outflows.

Delft3D solves the Reynolds Averaged Navier-Stokes equations (RANS) for an
incompressible fluid considering the Boussinesq approximation and the hydro-
static assumption in the vertical direction. Dividing the contribution of vertical
and horizontal eddy viscosities from equation 22, and applying the conservation
of mass and hydrostatic assumption:

10 u; 0 ou
o P ti ( u’), (4.28)

aui+ aui + +
— tU— WU =————+V —|vy—
ar  lox; ° APY PA axi 0z\ ' 0z

in which u; is the Reynolds’ time-averaged velocity field, p is the pressure, w, is
the inertial frequency, used to account for the contribution of the Coriolis effect.
v, and v, are the horizontal and vertical eddy kinematic viscosity (m?/s), respec-
tively. Recall that for the shallow water assumption, the momentum equation
in z-direction is reduced to the hydrostatic form since the vertical velocity is ne-
glected in the numerical procedure (w = 0). Once horizontal velocities have been
found, the vertical velocity is estimated by integrating the mass conservation
equation 4.27.

The transport of scalars and heat are governed by a multidimensional convection-

diffusion equation, which can be defined, in the orthogonal coordinates as

6C+6u,-C_ a( oC
or 0x;  0x;

D—) +3S, (4.29)
ax,-
in which C is a scalar(e.g. heat, salinity, or constituents), S is sources and sinks
due to discharges and withdrawals, and D is the eddy diffusivity coefficient. For
the horizontal plane and the vertical direction, D = Dy, and D = D,, respectively.
The horizontal eddy diffusivity coefficient (D},) is anisotropic along the horizontal
plane x-y.

In order to solve equations 4.28 and 4.29, Delft3D estimates the eddy viscosity
and diffusivity coefficients from the turbulence closure modules, discussed in
Section 4.3.1.

Heat flux model

The total flux of heat energy across the water surface is modeled according to the
heat balance illustrated in Figure 2.7. Delft3D-FLOW offers different heat flux
models Delft Hydraulics (2003) depending on the available meteorological data,
such as the Murakami heat flux model Murakami et al. (1985) and the Ocean flux
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heat model Lane (1989); Gill (2016). Observations in small thermally stratified
reservoirs have shown that the Murakami heat flux model underestimates the
energy loss by evaporation compared to the Ocean model Polli, Bleninger (2019).
Although this difference has been identified, the Murakami model was capable of
detecting Kelvin and Poicaré internal waves in Lake Constance Dissanayake et al.
(2019). Ocean heat flux model has been used in the Delft3D model to simulate
internal seiches Carvalho Bueno de, Bleninger (2019); Kranenburg et al. (2020).
Since both models have been capable to simulate internal seiches in lakes, here
we describe in detail only the Ocean heat flux model, which has been used in this
thesis. The Ocean heat flux model takes into account the following components
of heat:

Qtotal = Qsw + Qir + Qg + Qse, (4.30)

in which Qg is the net heat flux from short wave, Q; is the infrared (long wave)
heat flux, Qy, is the latent heat flux (phase change effect; e.g. evaporation), and
Qs sensible heat flux (temperature change effect; e.g. convection).

The net incident solar radiation (short wave) is the only term that is entirely
prescribed by the Ocean heat flux model 2. The absorption component of the
net incident solar radiation into the water column is computed from the albedo
coefficient Ab = 0.06, which reduces the magnitude of short wave that hits the
water surface

Qsw = Qiw (1 - Aby) Fe, (4.31)

in which Q;,, is the incident solar radiation and F.. =1-0.40 C, —0.38 Cg isa
function to take into.account the influence of absorption of solar radiation by
clouds, where C¢ is the user-specified fraction of sky covered by clouds. Equa-
tion 4.31 describes the balance between short wave radiation and water surface
radiation illustrated in Figure 2.7.

The infrared radiation (Figure 2.7) is calculated by Ocean heat flux model as

Qir =0.985 Ky, 72 1(0.39-0.05 v/e,)(1-0.6 C,), (4.32)

water (K

where K, = 5.67 1078 J/(m2sK?*) is the Stefan-Boltzmann’s constant, Tyater ® is
the water surface temperature in Kelvin units, and e, is the vapor pressure, which

is defined as
0.7859+0.03477 Tom Q)

e, =RH10 THO.00412 Tyateric) | (4.33)

where T4, is the air temperature, Tyater is the surface water temperature, and
RH is the relative humidity (%), which can be specified by the user as a function
of time and space.

The latent heat flux is calculated by dividing the contribution into two factors:
wind-driven and buoyancy forces (Q;, = Q‘l"gnd + Q?;Oy). The contribution due to

wind is calculated through Danton’s law of mass transfer Murakami et al. (1985):

Q}ﬁnd =Ly Patm Ce UlO(‘]s - qa)» (4.34)

2Delft3D also provides an option that estimates the incoming shortwave radiation based on
geographical position and the local time of the simulated system
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in which L, is the latent heat of vaporization (J/kg), c, = 0.0015 is the Dalton
number, Uy is the wind speed at 10 m height (m/s), and g and g, are the specific
humidity of saturated and remote air, respectively. pam is the user-specified air
density (kg/m)>.

The contribution due to buoyancy forces to the evaporation rates Qy, is
caused essentially by the temperature differences, and is calculated based on the
principle of heat and mass transfer:

Q;):Oy = Kvapatm(qs - %), (4.35)

where « is the heat transfer coefficient (-) and pam, is the average air density
(kg/m3).

The sensible heat flux is computed similarly to the latent heat flux, being split
into two contributions, wind forcing and buoyancy effect:

Qse = Cpatm(Twater - Tatm) (patm cp Upo + Kspatm), (4.36)

in which cpam = 1004 J/ (kg K) is the specific heat of air at constant pressure,
¢, = 0.00145 is the Stanton number, x; is the heat transfer coefficient (-) and
Twater a0d T4ty are the surface water and air temperature expressed in Kelvin unit,
respectively.

Turbulence model

Since Delft3D is based on RANS concepts, which average all flow fluctuations,
the influence of turbulent fluctuation on mean flow can be modeled through
an implemented turbulence closure model, which determines v, and D,. The
Delft3D model has four different turbulence closure models, including the k-¢
and k— L models.

The x-£ model is a second-order turbulence closure scheme that is based
on the balance between dissipation and production of turbulent energy, which
implies an equilibrium hypothesis under the boundary condition, P = €. In-
vestigations have shown that the x-¢ turbulence closure model provides good
applicability to detect internal seiches in stratified lakes 2. However, vertical
mixing induced by shear and break of high-frequency internal waves is not ex-
plicitly taken into account in the x-€ turbulence closure model implemented in
Delft3D Delft Hydraulics (2003). Furthermore, the energy of BSIW transferred to
high-frequency waves through degeneration processes is underestimated by the
Delft3D model Carvalho Bueno de, Bleninger (2019).

The vertical eddy viscosity (v,) is defined as the combination of the molecular
viscosity and the maximum eddy viscosity coefficient comparing the result of the
turbulence closure model and the background vertical mixing that accounts for
all other forms of unresolved turbulence VEaCk, which must be specified by the
user. For a strong stratified system, v, is reduced to the molecular viscosity, which
neglects the contribution of unresolved internal waves. To model the production
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of turbulence induced by the internal wave field, the vertical eddy viscosity must
be amplified. In Delft3D, propagating internal waves, which are susceptible to
being excited and breaking near the lakeshore, may not be explicitly taken into
account depending on the wavelength scale. The effect of these internal waves
can be taken into account through a constant background vertical eddy viscosity
coefficient.

The vertical eddy diffusivity coefficient D, is obtained similarly to the viscosity
coefficient. In addition, for the 3D-turbulent closure model, the influence of
internal wave breaking is also taken into account in a strong stratified system by
the Ozmidov length scale (equation 22):

DY =022 N (4.37)

in which L, is the Ozmidov length scale and N is the buoyancy frequency (equa-
tion 22). The vertical eddy diffusivity (D,) is determined as the maximum of the
vertical eddy diffusivity estimated by equation 4.37 and the 3D turbulence closure
model Uittenbogaard et al. (1992), which is also combined with the molecular
contribution. Note that the equation 4.37 defined in Delft3D uses a constant
mixing efficiency ymix = 0.2 (equation 22).

The horizontal components of the viscosity and diffusivity are calculated
based on the contribution of the sub-grid scale horizontal eddy viscosity/dif-
fusivity, background quantity, and the coefficients computed following the k-¢
turbulence closure model.

To find all eddy coefficients, the user must specify the background vertical
eddy diffusivity (D52%) and the background vertical eddy viscosity (v2°%), which
are specified to take into account the contribution of vertical mixing associated
with internal wave breaking and shearing, and other mixing effects that are not
resolved by the turbulence model. The background coefficient should be of the
order of 107 to 107> m2/s for the diffusivity coefficient and 10~ m2/s for the
viscosity coefficient Delft Hydraulics (2003). For fine grids (€' (< 100 m)), Dy, = 1
to. 10 m?/s, while for coarser grids, D, may vary between 10 and 100 m?/s.

Numerical aspects

The full momentum, continuity, and transport equations in Delft3D are solved
based on a finite difference approach with the implicit method in alternating
direction Stelling, Duinmeijer (2003) using the Arakawa C-grid type of discretiza-
tion Arakawa, Lamb (1977), in which the water level is defined in the center of the
cell and the velocity components are specified perpendicular to the faces of the
cells. Delft3D follows the Courant-Friedrichs-Lewis (CFL) condition to guarantee
the stability of the model Smith et al. (1985)

1 1
Cr=2AfW/gH|—+—|=1, 4.38

in which g is the acceleration of gravity, H is the total water depth, At is the simu-
lation time step, and Ax and Ay are the grid size in x and y direction, respectively.
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It should be mentioned here that, since Delft3D uses an implicit scheme, even
for C; > 1, the simulation is not unstable. The recommended limit to guarantee a
stable solution is C, < 11 Delft Hydraulics (2003).

To keep small numerical diffusion, the horizontal advection term in the mul-
tidimensional convection-diffusion equation 4.29 is split into two second-order
central discretizations and a third-order upwind scheme (cyclic method).

The horizontal eddy viscosity must be specified by the user under the follow-
ing condition:

Ax? Ay?

_ 4.39
< At(Ax%+Ay?) (4.39)

Vi
in which At is the time step, and Ax and Ay are the grid size of the simulation in
x-direction and y-direction, respectively.

The model also requires a condition for the stability of baroclinic mode (inter-
nal wave propagation), which requires that

“oogH( 1 1
INEY L p"g—( + )<1, (4.40)
Po 4 \Ax2 Ay?

in which pj and p, are the water density at the lake bottom and surface, respec-
tively.

4.4 Application

Engineers often design sensors to fit their exact needs. Today, there are countless
sensor devices to measure many types of physical, chemical, and biological
parameters.

4.4.1 UsingArduino
4.4.2 Temperature probe
4.4.3 Conductivity probe

In this section it shows how to construct a simple resistive conductivity probe for
continuous measurements, which fundamentally measure the water resistance
to the electrons flow continuously. The fundamental concepts of conductivity
meters have already been explained in section 4.2.1, here we present just the
procedure to construct the conductivity and some brief details. This device
should not be used to practical applications that requires high accuracy.

4.5 Interwave Analyzer
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Exercises for 4.1.1 Dimensional Analysis

Figure 4.13 Wind-setup P4.1 The continuous action of a steady wind on the water surface of a lake
causes a vertical displacement of the water level, 4. This setup is
influenced by the basin depth, H, the lake length parallel to the wind
direction, L, the water density, p;, the gravitational acceleration, g, and
the shear stress of the wind, 7.

Applying the Buckingham theorem, find a relation for the setup.

Exercises for 4.1.1 Dimensional Analysis

P4.2 Would solid NaCl conduct electricity ?

L4.3 Measure the thing in P 22.
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Signal and Data processing

5.1 Time series

5.2 Thermocline

The Schmidt stability (Equation 2.22), introduced in section 2.2.1, describes the
lake’s capacity to resist mixing because of density gradients and the water volume.

5.3 Spectral Analysis

Spectral analysis is a statistical technique commonly used for data analysis. In
this method, a time series is decomposed into a sum of sine components, which
reveals all the oscillatory components present in a given signal. By doing so, it
unveils oscillatory motions that might have been hidden in time series measure-
ments (Mortimer, 2004).

This technique transforms spatial and temporal patterns into frequency do-
mains, allowing easy identification of dominant frequencies in periodic time
series (Lin, 2012). When applied to the dynamic behavior of lakes, spectral analy-
sis of measured data (such as temperature and horizontal current) demonstrates
that lakes exhibit'a complex mixture of oscillatory mechanisms. Some of these
mechanisms are waves, such as seiches and high-frequency internal waves, while
others may be purely random noises (Imboden, 2003).

To detect oscillatory responses in temperature and velocity data, spectral
analysis becomes a valuable tool. Spectral analysis allows us to identify dominant
periods in the oscillations of each component. Two spectral techniques that
are commonly used for this purpose are the Fourier transform and the Wavelet
transform. Using these spectral techniques, researchers gain insight into the
behavior of internal waves and the complex interaction between wind and water
dynamics in lakes and reservoirs. This comprehensive approach helps us better

understand these phenomena and their implications for the aquatic environment.
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Figure 5.1 Transformation of time
series to frequency components by
the Fourier transform.
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Figure 5.2 A N point DFT as a ma-
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5.4 Fourier Analysis

The Fourier transform is a mathematical technique used to decompose a function
of time into the sum of many sine or cosine components of different frequencies,
phases, and amplitudes (Chu, 2008). It provides valuable information on frequen-
cies, revealing dominant periodicities (Figure 5.1). The Fourier transform .% of a
function f(n) is defined as (Greenberg, 2013)

+o0o
FAf ()= f) = (e = f fmye™ " dn, (5.1)
—00

in which n represents time and the transform variable w represents the frequency.
Given that we are dealing with a time series of measurements, our focus is

on the discrete view of the Fourier transform. The discrete Fourier transform
(DFT) can be obtained easily from the continuous transformation. In the discrete
transformation, we take N samples in the time domain and convert them into
N complex values 7i(w) in the frequency domain. Thus, equation 5.1 can be

rewritten as
N-1

Fifm}=f@=Y f(n)e #mnN, (5.2)

n=0
Equations 5.1 and 5.2 demonstrate that the Fourier transform can be under-
stood as a convolution between a time signal and a series of sine and cosine
functions, or alternatively, as a matrix-vector multiplication of f(n) (Figure 5.2):

f(w) — e—iann/N f(n)

Equation 5.2 yields the amplitude of the signal under analysis for a given
frequency w. The combination of amplitudes for different frequencies provides
us with the spectrum of the analyzed signal. The frequency resolution is given by

1
Af = T (5.3)
in which T is the total time sampling. Multiplying A f by the length of the signal
sample (NN), we obtain the maximum frequency at which the DFT is defined
( fmax =A f N).

However, due to the nature of the Fourier transform, equation 5.2 represents
the result of two phase vectors rotating around the complex plane, where the real
and imaginary components are orthogonal to each other. In fact, although the
real and imaginary components are out of phase, they are exactly the same in
magnitude, but with opposite signs, resulting in a conjugate symmetry around
fmax/2. Due to this symmetry, the signal produces data loss at frequencies higher
than fmax/2, which is a phenomenon known as aliasing. This occurs due to
overlapping processes, and it can distort the information contained in the signal
beyond the Nyquist frequency (fmax/2). The lowest frequency that guarantees
that no data is lost is called Nyquist frequency, which can be expressed as:

AfN
Joyquist = _fH;X = _]; . (5.4)
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Listing 22 shows the implementation of the DFT based on equation5.2. Note
that to obtain the total amplitude of each component, we should normalize the
DFT by 2/N.

In fact, due to the nature of convolution, which provides a sum of components,
we must divide this sum by the number of samples (N). Additionally, since
the Fourier transform is two-sided symmetrical and we are interested in the
single-sided spectrum, we must multiply the Fourier transform by 2. This step is
necessary to account for the contributions of the signal on the other side of the
spectrum. By taking these factors into consideration, we obtain an accurate and
normalized representation of the single-sided spectrum, eliminating redundancy
and preserving the relevant information of the signal in the desired frequency
range.

import numpy as np

3 def dft_slow(t,y):

dfx = []

N = len(y)

dt = t[1]-t[0] # time resolution
Ts = Nxdt # total period

frq = np.arange(N)/Ts # spectrum (frequency axis)

for k in range(N):

df = 0

for n in range(N):
M = np.exp(-2j*np.pixk*n/N)
df += y[n]*M

dfx.append (df)
return dfx,frq

ffx, freq = dft_slow(t,y)
dft = [2*i/N for i in ffx] # normalization

Listing 5.1 Algorithm to compute the discrete Fourier transform (DFT).

For example, consider a stationary time series lasting 770.5 h (approximately
32 days). The signal represents the unit length and is given in meters. It has a
mean value of 15 m and consists of two cosine functions with strong random
noise, leading to a maximum displacement of +5 m. The time series is sampled
every 1800 sec (see Figure 5.3a). The two main fluctuations in the signal have

periods of 2 h and 5 h, and both oscillatory components have an amplitude of 1 m.

Due to the presence of strong noise, it is challenging to distinguish the existence
of harmonic components in the time series. To reveal these components, we need
to apply a spectral method. One way to obtain the time-series spectrum is by
using the discrete Fourier transform algorithm (Listing 22).

The right part of the spectrum lacks valuable information due to the conjugate
symmetry of the Fourier transform. It essentially mirrors the spectral energies
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Figure 5.4 Example of the spectral
leakage.

present in the left part. To avoid redundancy, this side of the spectrum is ignored
and to compensate for the omitted data, the Fourier transform is multiplied by a
factor of 2 (Figure 5.3b).

Additionally, when plotting the amplitude, we use the modulus to focus solely
on the magnitude of the harmonics without concern for their phase differences.
Consequently, in the DFT plot of the signal shown in Figure 5.3b, we observe
two positive peaks, representing the cosine functions that were added to the
original signal. It is important to note that the noise introduced into the signal
does not contribute to any periodic component. Instead, it only adds noise to the
spectrum, without showing any discernible pattern.

(a) - Time-series 100 (b) - Spectrum

execution time = 759 mS

0.20Hz —»

[ 200 400 600 800 1000

Figure 5.3 a) Time series of a hypothetical signal and b) spectrum associ-
ated with this signal, obtained by listing 22.

Recall that the two cosine functions added to the signal had an amplitude
of 1 m. However, in Figure 5.3b, we can observe a slight difference for each
component. This effect is attributed to two significant factors: spectral leakage
and the noise present in the data.

In the discrete Fourier transform, both the time and frequency domains
are circular.topologies, meaning that the two endpoints of time are connected
together.. Spectral leakage occurs when the frequency does not exactly match
the cotresponding bin, resulting in a misalignment. In other words, when the
integer number of periods does not fit within the acquisition time interval. As a
consequence, energy from the signal leaks into other frequencies, leading to an
increase in spectral energy at neighboring frequencies around the main peak. The
primary peak is often referred to as the main lobe, while the energized frequencies
surrounding it are known as side lobes. It is important to note that spectral
leakage always reduces the spectral energy of the main peak, as a portion of the
energy gets distributed to the side lobes.

Another effect that can reduce the accuracy of spectral peaks is noise. Noise
may introduce inaccuracies in the spectral peaks due to its contribution to har-
monics during the convolution performed by the Fourier transform. To address
this issue, we introduce in Section 5.4.3 the concept of the windowed Fourier
transform, a technique used to average segments of the Fourier transform. Al-
though this technique is effective in mitigating noise-induced inaccuracies, it can
also lead to increased spectral leakage.

In Section 5.4.3, we dive into the windowed Fourier transform and discuss
how to handle the issue of spectral leakage that arises when performing this type
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of transform.

By now, we shift our focus to the conjugate symmetry of the Discrete Fourier
Transform (DFT) to accelerate the algorithm. As we know, the right part of the
spectrum, which was obtained using Listing 22 and shown in Figure 5.3, was
completely ignored. However, any additional information regarding the spectral
energy can be valuable for its calculation, making the computation of this ne-
glected portion of the spectrum unnecessary. Taking advantage of the inherent
symmetry of DFT, Cooley, Tukey (1965) proposed a faster algorithm to calculate
the spectral energy of a signal.

5.4.1 Fast Fourier Transform

The Fast Fourier Transform (FFT), initially proposed by Cooley, Tukey (1965),
takes advantage of the inherent symmetry of the DFT to eliminate redundant
calculations. This technique substantially reduces storage requirements and
computation time, operating on the order of Nlog, N instead of N complex
multiplications. The FFT accomplishes this by breaking down the calculation into
two discrete Fourier transforms of length N/2, one with even and the other with

odd subscripts:
2r
n=
2r+1

in which 0 < r < N/2. The fast Fourier transform .# of the function f(n) is defined
as

for n even
for n odd

(N/2)-1 , (N/2)-1 ,
y{f(n)}k — Z f(zr) e—2mk(2r)/N+ Z f(2r+ 1) e—2mk(2r+1)/N'
r=0 r=0
(N/2)-1 _ _ (N/2)-1 _
- Z f(zr) e—4mkr/N +e—21ﬂk/N Z f(2r+ 1) e—4m’kr/N X (5.5)
r=0 r=0

even-indexed odd-indexed

The FFT operates on the principle that the DFT of a sequence with N data
points can be obtained by combining the DFTs of its two halves. By splitting
the DFT into two parts, as shown in Equation 5.5, we can compute the DFT of
two shorter signals, effectively reducing the computation to N?/4. However, we
can achieve even greater computational efficiency by applying this technique
iteratively as long as the Fourier transforms have an even value R, leading to
a significant reduction in computational cost to N log, N. The reduction in
computational cost compared to the standard DFT is proportional to the length
of the signal, as illustrated in Figure 5.5.

In this case, where the DFT is split into two interleaved DFTs, we refer to the
FFT as radix-2. Radix-2 FFT requires that the time series length be of a power of
two, as it computes the DFT in log, N stages. In Listing 5.4.1, we present a simple
and efficient implementation of a radix-2 FFT based on Equation 5.5. Although

Spectral leakage and the effect on
frequency band

Peaks located close to the high-
est and lowest frequencies may
exhibit greater spectral leakage
due to the abrupt transition at the
signal’s end. This sudden discon-
tinuity generates high-bandwidth
frequency content, leading to a
broad-band spectrum, and caus-
ing some of the energy to leak. As
seen in our example, this effect

is evident in the 5 h™ frequency
oscillation, where a more pro-
nounced and energetic side lobe is
observed, consequently reducing
the amplitude of the main peak.

Table 5.1 Spectral leakage.

— DFT
1054 —— Recursive FFT

Calculation

0 100 200 300 400 500
Time-series size - N

Figure 5.5 Comparison between
the computational cost of DFT
and FFT, implemented in the list-
ing 22 and 5.4.1, respectively.
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Figure 5.6 The spectrum of time
series of temperature obtained
through the radix-2 FFT, imple-
mented in the listing 5.4.1.

radix-2 is the most common type of FFT, there are other radices, such as radix-4,
where the DFT is divided into four parts, which require fewer calculations stages
than radix-2. However, the limitation with radix-4 is more stringent, as the length
of the signal must be a power of four.

3 def fft_recursive(y):

N = len(y)

if N ==
return y
else:
Feven = fft_recursive([y[i] for i in range(0, N, 2)])
Fodd = fft_recursive([y[i] for i in range(1l, N, 2)])

ff = [0] * N
for m in range(0,int(N/2)):
ff[m] = Feven[m] + np.exp(-2j*np.pi*m/N) * Fodd [m]
ff[int(m + N/2)] = Feven[m] - np.exp(-2j*np.pi*m/N) * Fodd [m]

return ff

Listing 5.2 Fast Fourier transform

In our previous example, we applied the signal to the FFT implemented as
shown in Listing 5.4.1. Since the signal must now have a length that is a power of
two, we reduced the time series to only the first 512 h (= 21 days). As observed,
the resulting spectrum is exactly the same as that calculated by the standard DFT,
which was implemented in Listing 22. However, the execution time of the algo-
rithm is significantly faster (approximately 150 times faster than the DFT; Figure
5.6). The Fast Fourier Transform completed the calculation in 0.042 sec, while
the previous DFT implementation took around 6 sec to complete the process. It
is important to note that as the signal becomes shorter, the difference in time
consumption between DFT and FFT becomes less pronounced (Figure 5.5).

Indeed, while the FFT implemented in Listing 5.4.1 provides notable advan-
tages and is faster than the standard DFT, many computing packages in various
programming languages offer their own pre-implemented functions for FFT,
which can be significantly faster than the radix-2 implementation shown here.
These optimized FFT packages not only exploit the symmetry of DFT, but also
utilize techniques like sub-computation reuse, resulting in substantial improve-
ments in FFT performance. Moreover, some of these packages employ general
factorization methods, enabling them to compute FFT even when the length
of the data is not a power of two. In Python, for instance, the Numpy package
provides the fft function, which is highly efficient and capable of performing FFT
computations on various input lengths.
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When applying the FFT implemented in Listing 5.4.1, we encountered the
need to shorten the signal length to reach a power of two, resulting in some data
loss. However, a technique is commonly employed to extend the length of the data
without introducing any new spectral information, known as zero padding. This
technique involves adding zeros to the end of the signal, effectively increasing
its length to the nearest power of two, while preserving the existing data and
avoiding any loss.

5.4.2 Zero-padding

Zero padding involves the addition of extra zeros to a data sample. Its primary
purpose is to increase the signal length to the nearest power of two, which can sig-
nificantly improve the performance of the FFT based on the algorithm proposed
by Cooley, Tukey (1965). However, the benefits of zero padding extend beyond
simply reaching the next power of two signal lengths. Zero padding can also be
advantageous in reducing spectral leakage. By appending zeros to the signal, you
effectively interpolate the data and increase the frequency resolution, resulting in
a narrower main lobe and lower sidelobes in the frequency domain. This, in turn,
reduces spectral leakage and improves the accuracy of spectral peaks in the FFT
output. Therefore, zero padding is a valuable technique not only for achieving
the desired signal length for efficient FFT computation but also for enhancing the
frequency resolution and mitigating spectral leakage, leading to more accurate
frequency domain analysis.

This approach can lead to an increase in the number of frequency bins, result-
ing in a more closely spaced spectrum. The sharper fluctuations in Figure 5.7b
illustrate this effect. Although zero padding does not directly enhance frequency
resolution, it can yield a smoother spectrum, making it easier to visually identify
isolated dominant frequencies. Additionally, since zero padding can alter the
interval between frequency domain samples, the energy may be better aligned
with an FFT bin, reducing spectral leakage and enhancing the accuracy of en-
ergy estimation. In particular, in Figure 5.7, the application of the zero-padding
technique is evident by the much sharper peak in the moving average of the PSD,
indicating a reduction in spectral leakage.
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Figure 5.7 a) Signal spectrum assuming the shortened data and b) Signal
spectrum of the signal zero-padded to the next power of two. The red line
indicates the moving average of the amplitude.

As mentioned earlier, when dealing with noise in spectral power estimation, a
common technique used is the Windowed Fourier Transform.

5.4.3 Windowed Fourier Transform

The windowed Fourier transform (WFT), also known as the short-time Fourier
transform (STFT), serves to decrease the variance of power spectral estimations.
To achieve this, the WFT divides the signal into multiple equal segments and
applies a window function to each segment. This windowing assumes stationarity
within the segments. Consequently, the window function, denoted g, is shifted
by ¢ along the timeline, and a Fourier transform is computed for each segment,
revealing the Fourier spectrum in each segment. Finally, the global spectrum of
the signal is obtained by averaging all individual segment spectra. This technique
allows for a more reliable and accurate representation of the signal’s frequency
content, particularly in the presence of noise or time-varying characteristics. This
technique decreases spectral variance and is expressed as a simple convolution
between signal and window,

+o00

FAf )} ={f, gnw) :f fmgn—-g)e #™"dn. (5.6)

The STFT can be computed using the code provided in Listing 22, which
includes the STFT function and the rectangular window function used for signal
convolution. Rectangular window is a commonly used window type in STFT
computations and is the most general case. It can be represented as a normalized
boxcar function that zeros out the signal data outside the window. In this way, the
FFT is performed in segments of the total signal, as illustrated in Figure 5.8. The
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rectangular window serves as a straightforward approach for STFT computation
and is often used for its simplicity and ease of implementation.

In Figure 5.8, the signal is divided into three short segments (A to C), and the
FFT is performed on each segment independently. Each individual periodogram
exhibits two peaks followed by noise fluctuations. The noise arises due to random
signals and does not represent any meaningful harmonic component.

By taking the average of all the individual periodograms, we obtain a smoother
periodogram. This averaging process effectively filters out noise fluctuations,
providing a more reliable representation of the underlying signal’s frequency
content. The peaks in the averaged periodogram are more pronounced and
accurate, as they reflect the true harmonic components present in the original
signal, while the noise is diminished through the averaging process. This process
enhances the quality of spectral estimation and allows for a clearer and more
accurate analysis of the signal’s spectral characteristics.

def stft_square(y,r,dt):

size = int(len(y)/r)

1
1

f_new
ff_new

for i in range(r):

y_new = y[int(i*size) :int((i+1)*size)]

N = len(y_new)

Ts = Nxdt
ff = 2*abs(np.fft.fft(y_new))/N
f = np.arange(N)/Ts

ff_new.append(£ff)
f_new.append(f)

return f_new, ff_new

Listing 5.3 Short-time Fourier Transform

Indeed, when we divide the time series into multiple segments for STFT
computation, each segment’s signal length becomes shorter. This can increase
the influence of sudden transitions or discontinuities at the end of the signal. As
a consequence, spectral leakage is more likely to occur, leading to an increase in
the energy that leaks into neighboring frequencies.

When applying the STFT with a window size of N/3 to the time series of the

Rectangular window

function " :
time series

/PN Ml

ddon MW

Figure 5.8 Example of the convo-
lution of the window function and
the signal to the STFT computa-
tion for a segment of the time se-
ries (using a rectangular window).

Amplitude
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previous example, we observe three periodograms, each representing a period
in which the FFT was applied (Figure 5.9a). It should be noted that decreasing
the size of the window results in the signal being divided into a larger number of
segments, potentially producing more periodograms in Figure 5.9a.

Figure 5.9 b shows that the averaging technique aids in reducing spectrum
variance, resulting in a reduction in noise fluctuation. However, this technique
may increase the degree of spectral leakage due to discontinuities that arise from
sudden transitions at the signal endpoints.

To mitigate the effect of discontinuities and reduce spectral leakage, it is pos-
sible to employ a smoothing method that gradually reduces the energy near the
endpoints. This approach helps to decrease the amplitude of discontinuities, and
consequently decreases the spectral leakage. One common technique involves
convolution with a window function that exhibits a lower amplitude near the
signal’s endpoints. For example, performing a convolution between the signal
and a Gaussian function can achieve the desired smoothing effect, resulting in im-
proved spectral estimation and a more accurate representation of the underlying
signal’s frequency content.

Figure 5.9 a) Periodograms from three segments were obtained from a
rectangular function of size N/3. b) Global periodogram (averaged peri-
odogram) for different window sizes. The red line indicates the FFT per-
formed without a window, whilst the light and dark blue lines show the WFT
performed with a signal split into 10 and 5 segments, respectively.

There are several types of window function available and each is suited to
different types of application. The most common windows used are the Hamming
and Hanning (also called Hann) window functions (Figure 5.10).

Hamming and Hanning are families of window functions known as raised
cosine, both featuring sinusoidal shapes with low side lobes that effectively ad-
dress the energy leakage effect in the Fourier transform. Some studies have
suggested that the Hamming and Hanning window functions are more suitable
for narrowband signals (Gao, Yan, 2010).

The main difference between the two lies in the handling of discontinuities.
The Hanning window removes all discontinuities, resulting in a faster side-lobe
roll-off decay rate. Consequently, it may not handle the nearest side lobes well,
but it performs better with other lobes that are not too close to the main lobe.
However, the Hamming window has a slower side-lobe roll-off decay rate, leading
to higher spectral leakage. However, it excels in dealing with closely spaced peaks,
making it more appropriate for closely spaced internal waves (internal waves
with closed periods). The Hamming window can effectively cancel the closest
side lobe in such scenarios (Figure 5.10).

Often, the Hanning window is adequate for identifying internal wave activities
in most cases, as it strikes a good balance between spectral energy and frequency
accuracy. While many internal wave studies employ these cosine windows, there
is no consensus on the best windows to identify internal waves. Certain appli-



5.4 Fourier Analysis

79

cations in internal wave studies have utilized different windows to discern the
response of the periodic oscillation.

Often, windowing techniques are used to smooth the signal near the end-
points, reducing discontinuities. However, this smoothing process can also lead
to data loss, resulting in an underestimation of the spectral energy. To address
this distortion and correct the amplitude and energy, we need to apply the win-
dow correction factor, which is determined by the specific window type that was

applied. The amplitude correction factor (k. , ) is defined as:

ke - Nwindow

‘window Z g(n) ’

in which Nyindow is the window size (number of points) and g is the window
function. For the Hamming window, ki, , =~ 1.85.

Figure 5.10 depicts the Short-Time Fourier transform applied to the previous
signal using various window functions. For clarity, we remove the noise from
the signal to facilitate interpretation of the results. Notice that the Hamming
window function effectively reduced spectral leakage. However, it also led to
some data loss caused by the convolution with the window, resulting in a lower
spectral energy than the expected value. To compensate for this discrepancy, the
entire spectrum should be multiplied by the amplitude correction factor. This
correction factor ensures that the energy estimation accurately reflects the true
spectral energy in the signal.

(5.7)
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Figure 5.11 Short-time Fourier Transform windowed by the rectangular and
Hamming functions (window size of N/4 points) without correction factor.

Although many internal wave studies use cosine windows, there is no con-
sensus on the best windows to identify internal waves. Specific applications of
internal wave studies have employed different windows to analyze the period
oscillation response. For example, Ostrovsky et al. (1996) utilized a short flat-top
window in temperature measurements to study internal waves on a small scale,
while Stocker et al. (1987) applied a split cosine bell window to analyze long in-
ternal seiches in lakes. Carvalho Bueno de et al. (2020) compared the use of two
different window functions (Flattop and Hamming windows) to identify internal
seiches in a small thermally stratified reservoir from a thermistor chain.

It should be noted that the flat-top window preserves the amplitude of the
signal but squeezes the data, necessitating the analysis of a larger amount of data
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Figure 5.10 Example of Hamming
and Hanning window functions
and how they deal with spectral
leakage.
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Figure 5.13 Corrected short-
time Fourier transform win-
dowed by the Hamming window
function with size of N/4 and
50%-overlapped.

(Smith, 2013). As such, the flat-top window is more recommended for analyzing
high-frequency internal waves when periodic data last for long periods. The
choice of the window function depends on the specific characteristics and goals
of the analysis, and it is essential to carefully consider the trade-offs between
resolution and data requirements for a particular study.

5.4.4 Overlapping process

Since convolution between a window function and a signal can lead to data loss,
the overlapping sliding window method is a common technique used in STFT to
mitigate this issue. It is important to note that the overlapping technique does not
correct the spectral energy lost as a result of convolution. However, it ensures that
the energetic harmonics, which may be present at the endpoints of a segment,
are not neglected (Figure 5.12).

Lovertap
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WV | | v

Figure 5.12 Data segmentation and overlapping sliding window technique.
Note that the oscillatory energy associated with the red solid curve would
be neglected if the overlapping technique was not applied.

The overlapping sliding window method involves dividing the signal into
overlapping segments for analysis (Figure 5.12). The optimal overlap percent-
age (Loverlap) is determined by the chosen window function. For wide windows,
such as Hamming and Hanning windows, a commonly recommended overlap
percentage is 50%. Conversely, narrower window functions often require a higher
percentage of overlap. The recommended overlap percentages for each win-
dow function are well documented in the literature (Heinzel et al., 2002). This
technique ensures that important information at segment boundaries is not
overlooked and contributes to more accurate and reliable spectral analysis.
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5.4.5 Non-stationary Signals

The Fourier transform commonly assumes that the analyzed signal is stationary,
meaning that the spectral components persist with the same frequencies and
amplitudes throughout the analysis period. However, many natural time series
exhibit non-stationary behavior, which includes most of the natural physical pro-
cesses, such as internal waves. The internal wave field may vary over time, leading
to the generation and dissipation of waves with different time scales depending
on the analysis period. Consequently, even numerical and experimental studies
investigating the generation and dissipation of internal waves excited from a
single wind event (Carvalho Bueno de et al., 2023; ?; Horn et al., 1998; Boegman
et al., 2005a) may not fully adhere to this assumption, as internal waves dissipate
over time.

For example, a study conducted on Lake Arendsee (Germany) analyzed six
months of data to identify different types of internal waves, including internal
seiches with higher vertical modes Bernhardt, Kirillin (2013). In another case,
within 9 days, the internal wave field identified in Lake Bala was reenergized three
times, causing significant fluctuations in the internal wave amplitude over time
(Simpson et al., 2011a). Consequently, the spectral content of non-stationary
signals may evolve and fluctuate, challenging the traditional stationary analysis
methods.

Due to the convolution in the Fourier transform, the spectral energy may
be underestimated when the harmonic components do not have consistent am-
plitudes throughout the entire analysis period. This leads to an inaccurate es-
timation of the spectral energy. When the Fourier transform is normalized by
the number of samples, it assumes that the spectral energy is equally distributed
throughout the period, resulting in lower-amplitude oscillations (Figure 5.14).
This phenomenon is particularly evident in non-stationary signals where the
spectral content changes over time, leading to fluctuations in the spectral energy.
As aresult, traditional stationary analysis methods may not accurately capture
the dynamic nature of such signals.

harmonic component
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Figure 5.14 The effect of Fourier transform in a non-stationary signal.
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The simplest approach to analyze non-stationary signals is to compute the
mean and variance for different time periods and examine if the statistics signifi-
cantly differ. One commonly used method is the short-time Fourier transform
(STFT), which assumes that the signal is stationary within each segment where
the FFT is performed. Unlike Listing 5.4.3, the spectrum of each segment in
STFT is not averaged to obtain a global spectrum. Instead, this non-averaged
representation provides valuable information on both time and frequency and
is referred to as a spectrogram. Each spectrum in the spectrogram represents
the spectral energy associated with the specific subperiod in which the FFT was
performed. This enables us to observe how the spectral characteristics of the
signal change over time, making the spectrogram a powerful tool for analyzing
non-stationary signals.

In our previous examples, the noisy signal consisted of two periodic functions
with an amplitude of 1 m, persisting throughout the analysis period. Now, we
consider a different scenario where the signal is composed of a dominant oscilla-
tory response lasting for 10 h during the last 10 days, and a transient harmonic
component varying from 2 h to 4 h during the initial part of the period (Figure
5.15a). Figure 5.15 b shows the global spectrum of the signal, corrected with the
amplitude correction factor of 1.85. Despite the correction factor, the amplitude
of the 10 h peak is still underestimated due to the non-stationary nature of the
time-series. When segments.are averaged, it leads to a global reduction in spectral
energy, as illustrated in Figure 5.14.

In fact, transient oscillations are challenging to detect in the global spectrum.
However, Figure 5.15¢ presents the STFT for each individual segment, providing
valuable insight into when each harmonic component exhibits higher energy. The
periodogram clearly reveals the transient component varying from 0.00012 Hz
to 0.00004 Hz, as well as the 10 h component occurring during the final 10 days
of the analysis period. The STFT’s time-frequency representation effectively
highlights the variations in spectral energy over time, allowing for more precise
identification of different harmonic components present in the non-stationary
signal.

The STFT technique effectively addresses the time localization problem by
identifying periods in which harmonic components are excited. However, a signif-
icant challenge with STFT is the inconsistent treatment of different frequencies,
which is commonly referred to as Heisenberg’s uncertainty principle. This prin-
ciple states that there is a fundamental trade-off between time and frequency
resolution in signal analysis. When trying to achieve better time localization,
frequency resolution is compromised, and vice versa. As a result, STFT may not
offer an optimal balance between time and frequency precision, making it less
suitable for certain applications where both high time and frequency resolution
are crucial.
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Figure 5.15 Spectral analysis of a noised non-stationary signal. a) Time-
series of the non-stationary signal, b) the spectrum of the signal-based
windowed Fourier transform (10 averaged windows), and c) the spectrum of
the signal for each window along time.

The uncertainty principle is closely related to the time-frequency resolution
(Millette, 2011). This challenge arises from the presence of an aliased spectrum
that falls outside the frequency range of the selected window (Gubbins, 2004).
When the window:size and type are chosen, the time-frequency resolution re-
mains constant, meaning that satisfactory resolution can only be achieved in
either the time domain or the frequency domain, but not both. When the window
size is kept fixed, the time-frequency resolution depends solely on the window
size and type. Consequently, a key aspect of the problem lies in the fact that at
high periods, there are few oscillations within the window, resulting in a loss of fre-
quency localization. On the contrary, at low periods, there are many oscillations,
leading to a loss of time localization.

An alternative approach to overcome Heisenberg’s uncertainty principle is
to use the Wavelet transform, which offers improved capabilities in analyzing
different frequencies. The wavelet transform incorporates a scaling parameter
that allows for varying the window size to analyze each frequency component
effectively. This flexibility in window size enables wavelet analysis to achieve a
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better balance between time and frequency resolution.

5.5 Advancing processing

5.5.1 Power Spectral Density

As mentioned above, the harmonic amplitudes estimated by the Fourier transform
rely heavily on the frequency resolution of the signal. This implies that they will
vary depending on the size of the signal. Although this can pose a challenge when
analyzing a single signal, it becomes even more problematic when comparing
two or more signals of different sizes (Figure 5.16). To address this issue, we
introduce the Power Spectral Density, a widely used technique to investigate
internal waves (Gloor et al., 1994; Vidal et al., 2013; Rozas et al., 2013; Bouffard
etal., 2016; Carvalho Bueno de et al., 2023; 2, 2020).
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Figure 5.16 Fast Fourier transform and power spectral density of two sig-
nals with the same harmonic component but different size. a) Fast Fourier
transform for 1024 (blue) and 2048 (red) data points. b) Power spectral den-
sity for the same two signals.

The key aspect of the Power Spectral Density (PSD) lies in the normalization
of the energy value to the width of the frequency bin. This normalization enables
ameaningful comparison between time series of different lengths. Additionally,
each frequency bin is multiplied by its complex conjugate. The power spectral
density is expressed as energy (square amplitude) per frequency (width).

One significant advantage of this process is the reduction of differences in
spectral energy. Formally, PSD can be obtained by calculating the ratio of the
sampling frequency to the mean square power spectrum. The mean-square
power spectrum, in turn, is obtained through the Fourier transform of the auto-
covariance function,

T
brr@) =y x To= LT (F I (5.8)

in which ¢ rfw) is the PSD of the function f(n), gb} 7 is mean-square power
spectrum of the function f(n), T; is the sampling period, and N is the length of
the signal.
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In their work, Welch (1967) introduced an improved estimator of the Power
Spectral Density (PSD) known as the Welch method. This method incorporates all
of the techniques described above. By combining Short-Time Fourier Transform
(STFT) with PSD estimation, the Welch method reduces the variance of the spec-
tral density, albeit at the expense of a lower frequency resolution in the resulting
estimate.

The technique involves the following steps: first, the time-series data is di-
vided into segments. Then, window convolutions and overlapping techniques are
applied to these segments. The segments are then averaged to obtain a smoothed
estimate. To compute the power spectral density of the signal, the averaged seg-
ment is squared and then normalized by the frequency bandwidth. This process
results in an improved estimation of the PSD.

To calculate the energy content within a specific frequency band (spectral
variance), we integrate the spectrum over the corresponding frequency band-
width. This integration process involves summing up the spectral values within
the designated frequency range. By doing so, we can determine the total en-
ergy associated with those frequencies. This approach allows us to quantify the
strength or intensity of the signal within the specified frequency band, providing
valuable insights into its characteristics and behavior:

f
EPSD(f):ff ¢rrlw)df. (5.9)

5.5.2 Phase and Coherence Analysis

Another significant analysis commonly utilized to examine internal waves is co-
herence and phase analysis. Coherence analysis is a method designed to measure
the correlation between two or more signals in terms of frequency. Provides
correlation values for each frequency (Figure 5.17).

Coherence analysis is a common method used to assess whether two or
more isotherms are influenced by an internal wave (Vidal et al., 2013). It also
serves to identify periods with potential resonance between internal waves and
wind forcing. For example, in the tropical Andean reservoir, high coherence
was observed over a 24-hour period between internal seiche activity and wind
forcing, suggesting the occurrence of wave-wind resonance with potential wave
amplification (Posada-Bedoya et al., 2019).

The phase is often obtained for higher coherence harmonics, allowing for the
determination of the phase lag between two signals in radians for each frequency.
This analysis offers valuable insights into the relationships and synchronization
between different signals, helping to understand their interactions and behavior.
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Figure 5.17 Sketch of phase and coherence analysis between two signals.
The coherence is high when both signals present high energy in the same
harmonic component. The phase indicates a 90 * out-phase response be-
tween signals 1 and 2.

Coherence can be obtained using the mean-square power spectrum of two
signals and the cross-power spectrum, (/)}g. The cross-power spectrum is the
Fourier transform of the cross-covariance function, given by

00 1 N

* _ - = —iwk
Pfg(w) = 2 mn;(fn—uf) x (gn—Hge we[-1/2,1/2], (5.10)

where (ir and (g are the means of each signal. The coherence, or mean square
coherence, between two signals f and g is given by

e

/07 (@) dg@)

inwhich ¢ is the cross-power spectral density (CPSD) of the signal f(n) and
g(n), and (p; 7 and ¢, are the mean-square power spectrum of functions f(n)
and g(n), respectively.

The coherence function provides correlation values ranging from 0 to 1, with
avalue of 1 indicating a perfect linear relationship between the signals. This fea-
ture is particularly valuable for establishing correlations between internal waves
and other variables that may be periodically influenced by internal wave activity.
Numerous studies have used coherence analysis to investigate the relationship
between underwater temperature and wind speed, revealing the presence of reso-
nance between baroclinic motion and the wind blowing above the lake surface
(Miinnich et al., 1992; Posada-Bedoya et al., 2019).

Using coherence analysis, researchers have shown that the amplitude growth
of basin-scale internal waves in lakes, resulting from resonance with wind events,
can exhibit different growth behaviors depending on the mode of the internal
wave and the basins where baroclinic activity is observed (2). This analysis tech-
nique has proven to be a valuable tool in understanding the interactions and

2

Crelw) = ‘ €[0,1], (5.11)
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influences of internal waves on various environmental factors, shedding light on
the dynamics of these phenomena in different settings.

When combined with coherence analysis, phase-shift analysis becomes a
powerful tool for detecting higher vertical baroclinic modes and determining the
longitudinal extension of internal waves. Phase analysis is frequently employed
to identify the occurrence of internal seiches with higher vertical modes, as
these modes are characterized by different layers flowing in opposite directions,
leading to an out-of-phase response in thermal fluctuations. For example, studies
conducted at Mono Lake identified a high coherence between temperature data
across the water column at a frequency of 22 h~! (Vidal et al., 2013). This finding
suggests the presence of internal seiches with higher vertical modes in the lake.

Phase-shift analysis calculates the phase lag between two signals (f and g) in
radians for each frequency and is defined as follows:

Prelw) = ——"%  €ln,-nl. (5.12)

In this equation, the numerator represents the cross-spectral density between
signals f and g, while the denominators represent the spectral densities of signals
f and g, respectively. Phase-shift analysis allows us to understand the temporal
relationship between the two signals at different frequencies.

Figure 5.18 displays the coherence and phase shift between two noisy time se-
ries, both exhibiting dominant periods of 5 and 2 h. The 5 h component oscillates
in-phase, while the 2 h component is 90° out-of-phase. As expected, coherence
indicates a higher spectral correlation for frequencies 5 and 2 h; however, due to
the presence of noise in our data, several higher coherence peaks appear in the
spectrum.

To appropriately address the significance of spectral peaks and coherence, we
calculate the phase shift only for harmonic components with coherence greater
than 80%. Phase shift analysis reveals that the oscillatory response of the 1/2 h™
frequency is approximately 90° out of phase, whereas the 1/5h™ frequency com-
ponent oscillates almost in-phase between the two signals.
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Figure 5.18 Coherence (blue) and phase shift (red) between two time series.
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Why do we use the red noise ?
The red noise has zero mean and
constant variance, presenting a
low-power spectrum weighted
toward low frequencies, without
dominant periodicity.

The red noise can be generated
by a temporal integration of white
noise:

red(t) = plag red(z—1) +w’, (5.14)
where w’ is the white noise and
given by R , /1 - pj,e, in which

R is a sample from the standard
normal distribution.

Table 5.2 Red noise.

5.5.3 Significance level

In many cases, when performing spectral analysis in various natural time series,
the peaks may not be as distinct as those depicted in Figure 5.3. Often, significant
peaks could be only slightly higher than the background spectrum noise, making it
challenging to discern them clearly. To ensure a consistent approach to determine
which peaks are truly significant, it is essential to base our analysis on statistical
methods that can quantify the significance of spectral quantities.

The significance of spectral peaks can be estimated by performing a chi-
square test on the mean red noise spectrum of the time series (Bernhardt, Kirillin,
2013). This test allows us to determine whether the observed spectral peaks devi-
ate significantly from what would be expected under the assumption of red noise.
By comparing the observed spectrum to the mean red noise spectrum, we can ob-
jectively identify which peaks are statistically significant. This approach provides
arobust and reliable method to assess the presence of significant periodicities or
frequencies in time-series data and is frequently adopted in the wide literature
(Vidal et al., 2013; Ahmed et al., 2014; ?; Carvalho Bueno de et al., 2020, 2023).

First, we need to calculate the one-lag autoregressive coefficient of the ana-
lyzed signal (f(¢)) (2):

X4 (7 e
=

in which f; = f; — f and N is the length of the signal.

From equation 5.13, we can derive the power spectral density of a red noise
function. It isimportant to note that the power spectral density of the red noise
must be normalized with the spectral energy of the signal:

(Pi;d = (red (('[[))ﬁ’ (5.15)

red

Dlag = , (5.13)

in which <p{e 4 is the normalized power spectral density of the red noise.

Finally, we can calculate the confidence level with respect to the amount of
red noise in the signal based on the chi-square test.

First, we calculate the finite Fourier transform of the lag correlation function:

2
1_plag

1 - 2p1ag €08(27/ fryquist) + plzag’

(5.16)

Rspectra =

in which pj,g is the one-lag autocorrelation, w is the frequency that varies from 0
t0 0.5 fayquist, Where fuyquist is the Nyquist frequency. Rgpectra must be normalized
by taking into account the total power spectral energy of the signal, similar to
equation 5.15.

The normalized Rspectra represents the power spectral density of theoretical
red noise (Figure 5.19). To estimate the confidence levels, we perform the Chi-
square test, where we define the probability of error and the degrees of freedom
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(Thomson, Emery, 2014):

(5.17)

2.5164 N,
dof=2 kover(—ze“’),

Nwindow

in which Nyjindow is the window size, N,ero is the window size considering zero-
padding, and kover is a correction factor to compensate for the overlapping and
windowing processes (Thomson, Emery, 2014). kqyer = 1.2 is recommended for
the 50% overlapping Hamming window(Bernhardt, Kirillin, 2013). Note that kover
is different from k{, , , the correction factor used to account for the influence
of the window function on WFT (Equation 5.7).

Applying the Power Spectral Density (PSD) to a signal composed of three
fundamental harmonic components (2 h, 5 h, and 10h), we can readily identify
the first two peaks (5 h and 10 h). However, the 2 h component is barely detectable
as a significant peak. It can only be considered valid on the basis of the analysis

of the mean red noise spectrum using the chi-square test (see Figure 5.19).
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Figure 5.19 The power spectral density (PSD) plot shows the synthetic sig-
nal with three harmonic components. The solid red line represents the
theoretical Fourier transform of the lag-correlation function. Additionally,
the red dashed lines depict the mean red noise spectrum for the time series
at a confidence level of 95%:.

5.5.4 WaveletAnalysis

To overcome Heisenberg’s uncertainty principle, an alternative approach to con-
ducting spectral analysis is wavelet analysis. Unlike traditional methods, the
wavelet transform utilizes multi-resolution techniques, allowing the simultane-
ous decomposition of a signal into both time and frequency domains. This feature
proves especially valuable when analyzing long periods of data. In essence, the
wavelet transform employs a variable aspect ratio, as demonstrated in Figure
5.20, providing a higher time resolution at higher frequencies. As a result, this
technique becomes more powerful for time series that consist of both lower- and
higher-frequency harmonic components.

Numerous studies have employed wavelet analysis to detect internal wave
activity. For example, Stevens (1999) correlated the spectral power of the wavelet
within the high-frequency internal wave range with the maximum shear between
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Wavelet Transform
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Figure 5.20 Wavelet transforma-
tion with variable aspect ratio.

layers over time, indicating that propagating internal waves might be excited by
shear stress between layers. Additionally, Bernhardt, Kirillin (2013) used wavelet
analysis to identify the seasonal variability of rotation-affected internal seiches in
Lake Arendsee (Germany).

Although wavelet analysis overcomes Heisenberg’s uncertainty principle in
studying internal waves, most studies in the scientific community still rely on the
Fourier transform to analyze harmonic components in temperature time series
(Boegman et al., 2003; 2; Antenucci, Imberger, 2001; Dissanayake et al., 2019).
This preference for Fourier analysis can be attributed to its well-established status
and widespread use. However, it is important to note that the Short-Time Fourier
Transform (STFT) has also proven useful for detecting internal waves in various
situations.

Wavelet Transform

The wavelet transform, denoted as Wy, involves the inner convolution between a
wavelet function v, and a signal f, whete f € L?(R). Unlike the Fourier trans-
form, the wavelet function is not fixed; instead, it adapts its size or scale depend-
ing on the analyzed harmonic component:

+00 _
Wi, 9) = (W uwm,s) :f_oo %ww(t—sv) dt. (5.18)

The wavelet function is derived from the mother wavelet through translation
and scaling (window size). The parameter v controls the position of the wavelet
function as it shifts through the signal, akin to the window shift in STFT. On the
other hand, the parameter s governs the wavelet scaling and determines the
resolution of time and frequency. When s is large, the signal is dilated, providing
more information on low frequencies. In contrast, small s values compress the
signal, offering more insight into the high frequencies.

The scaling parameter s plays a crucial role in overcoming Heisenberg’s un-
certainty principle, making wavelet analysis more powerful than Fourier analysis.
By appropriately adjusting s, wavelet analysis achieves a better balance between
time and frequency resolution, allowing the study of signals with varying charac-
teristics and frequency content.

In theory, equation 5.18 quantifies the fluctuation of the signal in the vicinity
of v, and the extent of this neighborhood is proportional to the scaling parameter
(s). The asterisk in the equation represents the complex conjugation of the base
wavelet function (¢, (n)). This wavelet analysis allows us to examine the signal at
different scales and positions, providing valuable insights into its time and fre-
quency characteristics with improved resolution compared to traditional Fourier
analysis.

In wavelet analysis, the size of the wavelet function does not need to be ex-
plicitly chosen, as it adapts to the scale of the analyzed signal. However, there
are numerous types of wavelet function available, and the appropriate selection
depends on the characteristics of the signal under study. Several factors must
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be considered during the wavelet function selection process, including the or-
thogonality of the wavelet function, its width, the shape of the time series being
analyzed, and whether the wavelet function codomain is real or complex (Farge,
1992).

Wavelet functions can be broadly categorized into orthogonal and non-orthogonal
wavelets. The orthogonal wavelet transform has a convolution number at each
scale that is proportional to the wavelet width. This property facilitates efficient
and invertible wavelet transforms, making it suitable for various applications in
signal and image processing, compression, and denoising. On the other hand,
non-orthogonal wavelets offer more flexibility but may not guarantee perfect
reconstruction. The choice between orthogonal and non-orthogonal wavelets
depends on the specific requirements and trade-offs in each analysis scenario.
Careful consideration of these factors helps to ensure that the wavelet analysis
yields meaningful and accurate results for the given data.

Wavelet functions are selected on the basis of their codomain, whether they
are real or complex wavelet functions. A complex wavelet is more adept at captur-
ing the oscillatory behavior of a signal, making it suitable for analyzing signals
with multiple components or varying frequencies. It effectively represents both
magnitude and phase information, making it useful for denoising and feature
extraction tasks.

The choice of the wavelet function is also influenced by the e-folding time,
a parameter exclusively used for continuous transforms. The resolution of the
wavelet transform directly depends on the e-folding time, which strikes a balance
between the width space and the Fourier space. Measures the width of the wavelet
relative to the scaling parameter (s). A larger e-folding time results in a broader
spread of the wavelet power, leading to poorer time resolution but improved
frequency resolution.

Another critical parameter considered in determining the wavelet function is
the shape of the signal. The selected wavelet function should match the type of
features present in the signal. For example, studies have suggested the use of a
rectangular function like the Harr function for sharp signals with jumps and steps
(Torrence, Compo; 1998). Conversely, for smooth signals, a smoother function,
like a damped cosine, is more suitable.

By appropriately adjusting these parameters and selecting an appropriate
wavelet function, researchers can effectively tailor the wavelet analysis to the
specific characteristics of the signal, obtaining valuable insights and accurate
results. Figure 5.21 shows a comparison between the wavelet analysis and the
periodogram obtained from the STFT.
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Figure 5.21 Spectral analysis of a noised non-stationary signal (same pre-
sented in Figure 5.15).

Another application of wavelet analysis is related to the global wavelet spec-
trum. The global wavelet spectrum is an averaged power spectrum based upon
a set of wavelet functions, which is similar to the averaged spectrum obtained
from the STFT. The global wavelet spectrum is a smoothed version of the global
STFT and is an efficient estimator of the true power of a signal (Fernando, 2012).
The global wavelet spectrum can be obtained by averaging all the local wavelet
spectra, equation 5.18:

N-1

Wilw,s) =— Y W, 9. (5.19)
f=0

1
N

Despite this method being extremely useful to estimate the true power of a
time series, it can generate the bias problem. This issue is related to the difference
between the global wavelet spectrum and the true Fourier spectrum in terms
of energy. At high frequencies, the global wavelet is very broad in frequency;,
and consequently all peaks in the spectrum are smoothed. On the other hand,
at low frequencies, the wavelet is narrow; therefore, the peaks are sharp, and
they present higher energy. Studies have revealed that in some occasions the
low-frequency energy is amplified and, consequently, the global wavelet does not
work efficiently (Wu, Liu, 2005).

5.6 Applications in physical limnology perspective

Time series of underwater temperatures are widely utilized as a prominent vari-
able for identifying baroclinic motions in thermally stratified water bodies. Many
times, temperature fluctuations are not directly applied to the power spectral
density, since this analysis would only give an idea of how the temperature varies
in a specific water depth. Instead, time series of isotherms are commonly used
to highlight the temperature fluctuation of a specific interface, providing the
amplitude of those physical waves. For example, in Mono Lake, a 14 °C isotherm



5.6 Applications in physical limnology perspective

93

was used to identify the occurrence of a 22 h basin-scale internal wave through
spectral analysis (Vidal et al., 2013). The time-series of isotherms were obtained
by using a thermistor chain. To gain a better understanding of the internal seiche
characteristics, the study evaluated time-series of isotherms at different stations
along the lake. The application of linear interpolation to obtain isotherms does
not disrupt the integrity of the spectral analysis (Lemmin, 1987).

Studies conducted in Lake Villarrica (Chile), using two-thermistor chains,
identified three different modes of internal oscillations through spectral analysis
of isotherm series (Rozas et al., 2013). These modes include the fundamental
Kelvin internal wave with a period of 24 h, the 12 h Kelvin internal wave with
the second vertical mode, and a Poincare wave with a period of 8 h. Note that
to reveal the occurrence of internal waves with higher vertical modes, a phase
analysis (Section 5.5.2) should be performed on different isotherms to reveal the
intrinsic nature of this type of internal seiche, which is characterized by water
masses flowing in opposite directions. A further discussion of this topic can be
found in Chapter 7.1.

In the context of identifying internal waves with different vertical modes, the
first mode is typically determined by using the isotherm situated in the pycno-
cline region (thermocline when stratification is mainly induced by temperature
variations). On the other hand, higher vertical modes generally require considera-
tion of multiple isotherms at various depths (Lemmin et al., 2005). However, it
is essential to recognize that higher vertical modes might exhibit a relatively low
level of energy. Consequently, they can sometimes evade easy detection through
spectral analysis because of their weak signal strength.

When using spectral analysis to identify internal seiches and higher horizontal
modes in a reservoir, the response of the analysis can be influenced by the location
of the temperature sensor within the reservoir. Temperature measurements
conducted in Baldeggersee showed a minimal vertical temperature displacement
near the center of the stratified basin, suggesting the presence of a fundamental
internal seiche with the nodal point located near the center of the basin (Lemmin,
1987). Stations located in the middle of the reservoir, which could potentially
serve as nodal points for internal seiches, may demonstrate a limited response to
the effects of internal seiches. However, they show a strong response to higher
horizontal modes.

During the past several decades, extensive research has focused on study-
ing the dynamics of lakes and reservoirs by monitoring the water temperature
(Mortimer, 1952). Today, as a result of significant technological advances, water
velocity measurements have also become valuable tools for understanding the
dynamics of stratified lakes. Studies conducted in Lake Alpnach have revealed, us-
ing spectral analysis of the bottom current and isotherms, that the current of the
bottom boundary layer is strongly induced by oscillatory motion induced by in-
ternal seiche activity (Gloor et al., 1994). These measurements provide additional
information and complement the information derived from the temperature data.
As aresult, researchers now have a more complete understanding of the intricate
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processes that govern the behavior of stratified water bodies.

It is important to note that the measurements utilized for identifying internal
waves (e.g. temperature, underwater velocity field) are not solely influenced by in-
ternal wave motions. Other factors such as variations in solar radiation and wind
intensity oscillations can also impact, for example, temperature measurements.
Therefore, it becomes essential to carefully investigate the spectrum, specifically
isolating and distinguishing oscillations caused by internal waves from those that
are unrelated to baroclinic motion. This distinction is crucial for accurately inter-
preting the spectral analysis results and gaining a comprehensive understanding
of the dynamics present in the reservoir.
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Chapter 6

Interfacial Wave

Waves can be generated between two or more layers of fluids of different densities
and are not limited only to the water-air interface. The sea waves excited by the
wind and the circular surface waves generated by a stone thrown onto a smooth
surface of water (Figure 6.2) are examples of free surface waves. By definition,
a surface wave propagates in a "one-layer system", presenting a high density
difference between interfacial fluids. For example, considering sea waves, the
water is approximately 1000% heavier than the air. Waves formed between oil
and air are also considered free surface waves, since oil is still much heavier
than air, approximately 900% heavier. However, waves can be generated by any
perturbation in a system composed of fluid layers with a density difference.

Figure 6.2 Circular dispersive waves fronts radiating from a localized source.

A "two-layer system" is formed by two fluids that present a small fraction of
the density of either layer. For example, oil and water (Figure 6.1), where water is
only 11% heavier than oil. Although apparently there is no difference between
free surface waves and interfacial waves, the mathematical description can be

strongly simplified when we have two fluids with a strong density difference.

97

Figure 6.1 Oil-water interface.
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e
soar 9"

Figure 6.3 Baroclinic torque.

Considering free surface waves, we can neglect the contribution of the air layer,
since the water density is much higher than the air density. This simplification
leads to a final solution that does not consider the properties of the air, leading to
a particular solution of the interfacial wave equation.

6.1 Free surface wave

Free surface waves have been described in great detail in many textbooks (see,
for instance, ?). Here, we present just relevant features of free surface waves to
help in understanding internal waves and its analogy with free surface waves.

This section is divided into three main topics. Firstly, we present a mathemat-
ical description to find the dispersion relation for free surface waves, the solution
of wave equations. Most of this solution is applied to find the dispersion relation
of internal waves; however, in the internal wave case the upper layer fluid is not
neglected.

Even after this generalization, the dispersion relation can be divided into two
cases depending on another simplification, which classifies the wave in more than
two different categories: deep and shallow waves. We explore this classification
since it is useful to treat these simplifications for internal waves, which tend to
have a more complex solution.

Finally, we discuss the energy transport of free surface waves and the defini-
tion of group waves, phase, and group velocities. This last topic may be important
for drawing a comparison between the energy of internal waves and surface waves
and for making an analogy between the physical description in a surface and for
a continuous stratified fluid, where internal waves, without interfacial ones, are
susceptible to be excited.

6.1.1 Small-amplitude solution

As we have previously shown in equation 2.56, vorticity is created essentially by
baroclinic torque and viscous shear. When an inviscid flow is considered, the
baroclinic term is the only source of vorticity.

From Equation 2.56, the baroclinic term can be expressed using vector nota-

tion as
1 0p 0P )
Qzepmkam = EVQXVP, (61)

in which Vp x VP is non-zero for any non-parallel planes. For example, in baro-
clinic activity, the isopycnals and isobars are inclined toward each other (Figure
6.3). In this case, the lighter fluid is accelerated faster than the heavier one,
resulting in a shear layer that causes vorticity generation.

On the other hand, considering that the isopycnal and isobars are parallel to
each other, the flow is considered barotropic and vorticity is not generated. This
is the case for an unstratified system where free surface waves are the only wave
that can be generated. This also leads to an important conclusion: surface waves
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are irrotational, whilst the internal wave is not. In addition, as we will explore
in the next section, ignoring turbulent motions, interfacial waves can also be
considered irrotational.

Let us now focus on a free surface wave as shown in Figure 6.4. The superficial
variation of the water due to wave evolution is represented by 1(x, y, t), a is the
wave amplitude, and the mean depth of the water is expressed by z = - H(x, y),
in which z can vary spatially along the coordinates x and y. Note that z can also
vary in time when topography variation is not neglected.

Since these waves are irrotational and inviscid, they can be described by
potential theory. Therefore, as discussed in Section 2.2, the velocity field can be
reduced to one scalar function, given by Equation 2.42. Thus, the simplified mass
conservation equation (equation 2.34) reduces to Laplace equation:

ﬁ{ﬁq_fﬁ_

= =0, 6.2
0x; \0x; le? (6.2)

in which ¢ is the potential velocity function.
In Cartesian space, the Laplace equation for a three-dimensional wave (Figure
6.4) may be expressed in a complete form as

2 2 2
o’y o9 0%

=0. 6.3
0x?  9y? (63)

37

The Laplace equation is an elliptic-type partial differential equation. Although
this equation is linear, it can be used to describe large-amplitude waves. Consid-
ering the presence of large-amplitude waves, it introduces nonlinear terms on
surface boundary condition. This equation requires boundary conditions in the
six surrounding boundaries, two in x — direction, two in y — direction, and two in
z — direction.

In z—direction we have two boundary conditions, one at the water surface and
another at the bottom of the system. Taking into account an impermeable bottom
(rigid), the vector velocity is aligned parallel to the bottom topography and, con-
sequently, the normalfluid velocity must be zero at z = — H(x, y). Mathematically,
n - V¢ = 0. Note that in this case, the vertical and horizontal components of the
velocity field are not necessarily zero.

First, consider the flow velocity vector in the bottom topography for a period
of time, as illustrated in Figure 6.5. Fluid particles move with velocity u; from
point 1 to point 2. Thus, we have the following.

{x2—=x1,y2 = y1,—H(x2, y2) + H(x1, Y1)} = At{u, v, w}, (6.4)

in which the vertical function H(x, y) can be expanded in a Taylor series for two
variables as

H(x )= H(x )+ (x —X)%H - )@ (6.5)
2,)2) = LN 2 1 ox Yo—n ay' .

z=-H(xy)

R -

Figure 6.4 Surface wave.

filxry) | o
i\u _________
X1 . "

Figure 6.5 Particle motion on the
system bottom.
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Substitution of equation 6.5 into z — direction of equation 6.4 and dividing
the whole term by At, give us
Ax 0H N AyoH _
et At 0x At dy

SN, =

Figure 6.6 Particle motion on the
bottom of the system.

Eulerian form

Another way to obtain the kine-
matic boundary condition is to
analyze the material derivative of
the resulting plane displacement.

Dz 0Z 0Z

-~ = = 6.7
Dt 6t+u’ax,- i)

in which

P z+ H(x,y) forz=—-H
B nx, 1) -z forz=n

Applying the condition z to the
derivative form of the material
(Equation 6.7), we obtain the bot-
tom and surface conditions ex-
actly equal to the expressions 6.6
and 6.10, respectively.

Table 6.1 Kinematic boundary
conditions .

in which Ax/At = u and Ay/At = v. Note that if we set the bottom conditions
as a plane surface, H is constant along the system, not varying along x and
y —direction, and consequently the bottom conditions become w = 0. Using the
definition of potential theory, we find that

%

=0.
0z z=—H

(6.6)

Equation 6.6 is known as the kinematic boundary condition for a rigid and
plane bottom.

When considering the free surface, once a particle is on the water-free surface,
it stays there always. Thus, the dot product between the velocity vector field
and the outward-pointing normal vector is not necessarily zero, as previously
observed with the bottom condition. In this case, the fluid particles move with
the water surface.

In analogy to bed conditions, Figure 6.6 shows the surface displacement
during the time interval A, in which the particle velocity vector is defined as

{x2—x1,0,n(x2, 1) —n(x1, 1)} = At {u, v, w} (6.8)

in which, since we consider the surface to be just displaced by wave motion, 7 is
the wave function. As the phase speed is aligned with x-direction, the velocity of
the particles in y-direction may be neglected.

Expanding n(xy, t2) into a Taylor series, we obtain the following.

on(xi, t2)

o (6.9)

n(x2, t2) = n(xy, ) + (X2 — x1)

Introducing Equation 6.9 into the vertical component of Equation 6.8 and
dividing each term by At, we obtain the following:

N, ) —nla, )  Axon _
At At 0x

)

in which Ax/At = u and t, — t;. Thus, we have the following.

on_ 9

on
ot Yox oz

1
a1 (6.10)

on z=1(x, 1).

Equation 6.10 is the kinematic boundary condition on the surface of free
water. However, we can simplify the conditions one step further. Note that the
point of application is n(x, t) which varies along x and ¢. We can extend equation



6.1 Free surface wave

101

6.10 in a Taylor’s series at z = 0 (Figure 6.7). Thus, considering just the first two

terms of Taylor’s expansion (first-order approximation), we have the following.
0 00 0 o( 0 0 0°
L R ] B

~
~

onz=0.
0x

(6.11)

ot Mazor T4ax sz oz oz

To simplify equation 6.11 we can write it in a non-dimensional form using
transformation variables.

n=an" t=Tt", (6.12a)
u=alTu* v=alTv* w=alT w*, (6.12b)
x=Ax" y=Ay* z=Az% (6.12¢)

in which T is the wave period, a is the wave amplitude, and A is the wavelength.

Variables donated by * are dimensionless. Substitution of equations 6.12 into
the expanded kinematic boundary condition at the water surface (equation 6.11)
gives us

adn* a* , 0 on* a* ,on*
Tor AT az* ot AT ax*
al 0 on*\ “addp* a’ ,0°px
——n e+t ——. (613
2T 3z (u Ox*) Tow AT a2 O
Dividing equation 6.13 by a/ T, we obtain the following.
on* a , 0 on* a ,0n*
o 2"z o A" axr
2 * * 2
a . 0 L 0n 0} a ,0°¢px
Al =~ — , (6.14
(/1) L az*(” dx*) oz 2 Geer GV

where for small-amplitude waves (a << 1), the terms of order ©'(a/A) in equation
6.14 can be neglected. Thus, considering the dimensional form, equation 6.14
becomes
on _0¢
ot 0z

which means that the vertical velocity of fluid particles on the water surface moves

(6.15)

)
z=0

vertically with the water surface and cannot be measured horizontally by u and v.

Note that for large-amplitude waves, the nonlinear convective terms also move
the particle laterally (Figure 6.6).

The last boundary condition comes from the equations of motion and is called
the dynamic boundary condition, which is applied exactly to the water surface
on the streamline (z = 7). Dividing all terms of 2.50 by p, the Euler equation can

be written.
0 uj; 0 uj; 10P

= +8i-

—tuj—=——-— 6.16
ot ”’axj o 0x; (616

Taylor expansion

flz) :
\ first order
g exact

Figure 6.7 Taylor expansion.

§= For shallow waters, the total
depth of the water H can
be used to parameterize
the dimensional variables
instead of A.

Small-amplitude wave and lin-
earization

Another way to simplify the kine-
matic boundary condition for the
small-amplitude wave is the direct
linearization of equation 6.11. We
showed through dimension analy-
sis that there are terms in equation
6.11 that have order @ (a/A), which
may be neglected when a < A.
However, inspecting equation
6.14, we can see that all terms of
order O(a/A) are nonlinear. So,

by neglecting non-linear terms,
we actually adopt the condition

a < A. Therefore, the lineariza-
tion of equation 6.14 implies that
we restrict our solution to small-
amplitude waves.

Table 6.2 Linearization of the kine-

matic boundary condition at water
surface.
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The second term of Equation 6.16 can be explored to obtain the Bernoulli
unsteady equation under some simplifications. The second term can be written
as

ou; ou; ouj ou; .(aui Ouj) ou; 6.17)

Ui—— =Ujz— +tUjT— —Uj— = — = .
Xi X i Xi Xi X i Xi Xi
Tox;  ox; Yo 7o Nox; o “ox;

Note that, for an irrotational flow, we have the following.

aul’ auj _

ax]' axi o

and, consequently, Equation 6.17 reduces to

6ul~ Gu] 1 6ujuj
Uij— )
Jax “i 0x; 2 0x;

and equation 6.16 can be written as

ou; 0usl2 (aul au,-) 10P
—_— u; = + 8-

+ ——
ot 0x; 0xj . 0x; o Gx,

Although we have already applied a simplification based on irrotational flow,
the potential theory (restricted to irrotational flows) can be applied to the tran-
sient term. Considering that p does not change along a streamline, we have the
following.

0(ad o(u;)?2 6P/
&(_gb) () € _gi=0 onz=n, (6.18)

0x; 0x; ax,
in which g; = {0, 0,- g}. Therefore, Equation 6.18 can be written in a convenient
form as

4 0(ui)?/2 ap/ o
Ot( ¢)+ wp ,%%2_6 onz=1. 6.19)

0x; 0x; dxi Gz
Taking into account only the vertical component (z direction) of the system
of equations 6.19 and that ¢ is a smooth function, equation 6.19 becomes

N2
(6(/)+(u]) P
0z

+—+gz|=0 onz=n. 6.20
ot 2 o § n ( )
We can now integrate the equation 6.20 with respect to z to obtain the follow-
ing result.
a<p (uj) ]
at 2

in which F(t) is the integration constant with respect to z, an arbitrary function
of time alone. Since F(t) is arbitrary, we can choose a suitable constant that fits
our needs. In a convenient form, assuming that F(¢) = P(n), the equation 6.21
reduces to unsteady Bernoulli equation, given by

P
E+gz=F(t) onz=r, (6.21)

2
9 U
ar +—= +gz 0 onz=n(x1). (6.22)
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Now we can expand the equation6.22 in a Taylor’s series at z =0

u? u?
6(/) 0 6(,[) ] 0 ( ])+gz+n6gz

ot Maza: "2 %2 Bz 0 onz=0,

2 2
op 0 0p Y (1)

op 00p Ui 0% _o. 6.23
or Mazor T2 e\ 2 )8 6.23)

Equation 6.23 can be written in a non-dimensional form using the same
transformation variables used before (equations 6.12). Thus, we have

u

arogt @ .o oy @ u72+ B .0 (u}‘z)+a N
T or* 12" 3z- 0 T2 2 AT oz nE&=

09" a9 o uy? G a(u}fz) T?

—n, —_— =0. 6.24
ar 2" 3z ar +/1 > i 6:24)

in which the last term cannot be adimensionalized with respect to fundamen-
tal quantities of our problem. Thus, we cannot compare the order of this term
with others (G(T?/(gA))), and consequently we cannot neglect this term by di-
mensional analysis. However, for small-amplitude waves, the terms of order
O(al ) can be neglected, since a <« A. Thus, the equation 6.24 can be written in
dimensional form as

0¢

— =-7ng. 6.25
3 ng ( )

Equation 6.25 is known as the dynamic boundary condition at the water
surface. This equation specifies that the boundary condition at the water surface
cannot have an arbitrary periodicity in space and time.

Now, before proceeding, let us analyze the motion function of the interface,
7. Since we are interested only in a simple harmonic motion, it is convenient to
specify the wave as a sinusoidal wave,

n(x;, t) = acos(k;x; —wt), (6.26)

where a is the wave amplitude and k; and w are the wave number and frequency,
respectively. Since the crests and troughs are parallel to each other, this type of
wave is called plane wave.

Equation 6.26 is one way to represent a plane wave which can also be pre-
scribed, for example, by

n(x;, t) = a sin(k;x; — wt), (6.27a)
n(x;, t) = Aelkixizon (6.27b)

in which A is a complex number that expresses the amplitude and phase of the
wave.

The sinusoidal representation of the interface displacement is not just con-
venient because these functions assume a basic wave form, but they can be

For a hydrostatic solution,
we can find the dispersion
relation through the wave
equation, which is obtained
from a system of equations
formed by conservation of
the mass and momentum
equations. For more details,
see Table 6.3.
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Hydrostatic solution

The hydrostatic solution provides
results for shallow water waves,
which considers that the horizon-
tal scales (wavelength) are larger
than the vertical scales (water
depth). The non-hydrostatic solu-
tion (6.36), is a generalization of
this solution.

By combining the momentum
equations in x— and z — direction,
and the mass conservation equa-
tion, we can obtain the wave equa-
tion:

2 2
ZTZ - c%% =0, (6.30)
in which ¢, = \/gH is the phase
velocity. The solution of shallow
water can be obtained assuming
n = A exp! K¥-00 and s exactly
the same as from 6.40.

Table 6.3 Shallow water free-
surface wave.

expanded in a linear series. Since the Laplace equation (Equation 6.2) is a linear
function, all the terms of an expanded representation of 1 can be a solution of the
problem.

The dispersion relation is obtained by solving the Laplace equation. Note that
the momentum equation in this situation is used just as in the dynamic boundary
conditions.

Since we assume the generation of only small-amplitude waves, linearizing
the boundary conditions, we can assume that the system response must have the
same periodicity. In this case, the solution of the Laplace equation (equation 6.2)
has the following form:

o(x,z,t) = f(z)sin(kx —wt). (6.28)

Subtracting equation 6.28 from the Laplace equation (equation 6.2), we ob-
tain a second-order linear homogeneous differential equation with constant
coefficients,

2
—k*f(2)sin(kx —wt) + i(zz) sin(kx—wt) =0,
f@. o,
—z K f@=o, (6.29)

in which we have two linearly independent solutions.
The general solution is given by

f(2) =C, eM% 4+ C, ek2?, (6.31)
where k; and k» are roots of f2 — k? = 0. Thus, Equation 6.31 reduces to
f@=Cre**+Ce™™, (6.32)

in which C; and G, are coefficients of the equation 6.32 that can be found by
boundary conditions.

From the kinetic boundary condition at the bottom of the basin (z = — H)
defined by equation 6.6 and the general solution of ¢(x, z, t) and f(z), defined by
equations 6.28 and 6.32, respectively, we have

o
0z

= (kCl e kH _ kC> ekH) sin(kx—wt) =0,
z=—H

in which we can easily find that
C1 = Cz eZkH.

The general solution now can be written as

b(x,2,8) =Cy (eZkH ek 4 e_kz) sin(kx — ). (6.33)
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Applying the dynamic boundary condition on the water surface for a small-
amplitude wave (Equation 6.25) to equation 6.28, we obtain the expression of
Cz:

0
_(Cz (eZkH ekz 4 e—kz) sin(kx — wl’)) = —agcos(k;x; —wt)
ot o
c, =28 1 ag( e*
27 ) e2kH 11 @ \ekH y e kH |

in which e¥H + e=*H = 2 cosh(k H). Thus, we have

_ag ek

=— . 6.34
C2 2w cosh(kH) ( )

Finally, substituting equation 6.34 into the general solution (6.33) gives us the
following.

—kH
_as_¢ 2kH kz , ,—kz) o 3
d(x,2,t) = 20 cosh(kH) ( +e )sm(kx wb),

_ ag k(z+H) | o=k+H)) gin(kx — wt
2wcosh(kH)( e )sm( X-wi),
ag cosh(k(z+ H))
2, ) = —————— kx—wip). 6.35
¢$(x,z,1) > cosh(kED) sin(kx — wi) ( )

The dispersion relation is obtained by the last boundary condition, the kine-
matic boundary condition on the surface of the water (equation 6.15).

on _9¢
0t 0z,
- @ sinh(kH) B
w cosh(kH)
w? = kgtanh(kH), (6.36)

)

0,

in which this expression is called dispersion relation since it describes the re-
lationship between wave frequencies (w) and wave numbers (k). Actually, the
expression shows that, for some conditions, waves of different wavelengths prop-
agate at different phase speeds (Figure 6.8).
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Figure 6.9 Tangent hyperbolic
function (H = 0.1 m).
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Figure 6.8 Comparison of the dispersion curves for three different depths
(H=0.01,0.1,and 10 m).

Note that when the wavelength is much higher than the depth of the water,
the phase velocity is constant, and consequently the wave is non-dispersive. The
dark red curve may contain non-dispersive waves only for low wavelength, when
k > 600. The red curve shows that for k > 6, the larger the wavelength, the faster
the phase velocity of the free surface wave. Figures 6.2 show dispersive circular
surface waves generated by a stone thrown into deep water.

From Equation 6.35 we can also compute the velocity fields. Taking the
derivatives of the potential velocity, the horizontal and vertical velocities are,
respectively,

_ akg cosh(k(z+ H))

ulx,z,t) = cosh(KH) cos(kx—wt), (6.37a)
_ akg sinh(k(z+ H)) |,

vix,z,t)= ” cosh(EH) sin(kx —wt), (6.37b)

in which the wave crest moves at phase speed,

_Y_ /8
cp =7 =\/ 3 tanh(kH). (6.38)

Figure 6.10 shows the solution to the problem of waves on the free surface. As
we can analyze, the maximum horizontal velocity occurs in the wave crest and
in the opposite direction at the wave trough. Maximum vertical velocities occur
between the wave crest and the trough. Furthermore, we can also observe that the
velocities are stronger at the surface of the water than at deeper regions. Note that
although Figure 6.10 uses the general solution of surface wave propagation, since
711 is a monochromatic wave (has a single wavelength and frequency), the wave
evolution does not show wave dispersion, which characterizes the propagation of
waves in deep waters.
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depth (m)

20 40 60 80 0 20 40 60 80
horizontal distance (m) horizontal distance (m)
-3.2 -1.6 0.0 1.6 3.2 -3.2 -1.6 0.0 1.6 3.2
horizontal velocity (m/s) vertical velocity (m/s)

Figure 6.10 Free-surface wave solution for an internal wave of 2 m ampli-
tude (with wavelength 50 m and wave period of 10 sec) propagating in an
unstratified basin of depth 20 m: (a) shows the horizontal velocity compo-
nent and (b) the vertical velocity component. The blue curve represents the
interfacial displacement given by 6.26.

6.1.2 Special cases

As we noted in Figure 6.8, if the depth of the water H is more grating than the
wavelength A, the wave is called dispersive. Essentially, this occurs since the
phase velocity of the wave can vary as a function of A. Based on this classification,
we now investigate the behavior of wave propagation for special cases: shallow
and deep waters.

In the limit of deep water, which can be expressed mathematically as kH > 1,
kH — oo, and tanh(kH) — 1 (Figure 6.9), we find that

o” =gk, (6.39) w0

and ¢, = v/g/k. Note that in this case c, is a function of the wavenumber &,
which characterizes the propagation of a dispersive wave.

On the other hand, in the limit of shallow water waves (kH — 0), tanh(kH)
can be approximated to kH through Taylor expansion, resulting in

\\\\\\?:
N
LN

depth (m)
.

w?® = gHK?. 6.40) -

The phase velocity in the deep water limit is given by ¢, = /g H, which means ol "m(m) P
that the phase velocity does not depend on the wavelength.

Figure 6.11 Velocity field for a sur-
6.1.3 Energy transport and Group velocity face wave (H = 100 m).

As a surface wave travels horizontally at the water surface, the water particles
move in a circular motion, returning to its original position. This behavior can
be observed in Figure 6.11, which is a vectorization of the velocities presented
in Figure 6.10. Clearly, the vector velocities do not form a circular motion, since
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§= The particle returns to its
original position accord-
ing to linear theory. Due
to nonlinearity, a small net
forward movement is ob-
served.

Time average

Even through the time average of a
powered trigonometric functions
that can be found through the
integration of the Pythagorean
identity, we may find the solution
through a simpler form. If T is
large enough, the time average
of sin?(¢) is the same as the time
average of cosz(t), so we know
that:

sinz(t) +cosz(t) =1,

in which the time average is de-
fined as

sin(f) = 1/2. (6.44)

Table 6.4 Time average of powered

trigonometric function.

wave propagation is not a steady flow, and Figure 6.11 shows only a moment of
wave propagation. Following the evolution of the wave, we may observe that
the pathline is circular and that as deeper the location, the smaller the circular
motion.

When water particles move up/down toward the surface wave crest/trough,
the kinetic energy is converted to the potential energy, and consequently the wa-
ter level is displaced from the equilibrium position. However, the tilted interface
flows back toward equilibrium, transforming the potential energy into kinetic
energy during wave propagation. Thus, the surface wave travels, exchanging ki-
netic energy with potential energy and vice versa. In this case, since we neglected
the contribution of viscosity and mixing, we assume that the wave propagates
infinitely and that the total energy is not dissipated by viscosity or turbulence.

Since the motion is dominated by kinetic and potential energy, we consider
that the total wave energy is given by the sum of its contributions.

E;=Ex+Ep, (6.41)

in which Ef is the kinetic energy and Ep is the potential energy.
The kinetic energy of the wave per unit of surface area during a wave period

is given by
=—f f (u +w)dzdt

in which T is the wave period.

Note that we can modify the integration limit from 7 to 0, just assuming that
the kinetic energy neglected at the crest is equal to the overestimation at the
trough. Thus, we have

(6.42)

Ex = (coshz(k(z+H))cosz(kx—wt)+

ZTf fH c? coshz(kH)
sinh? (k(z + H)) sin®(kx — wt)) dzdr. (6.43)

Taking the time average defined by Equation 6.44, we obtain the following.

_ 0 242
T~ P f HCZL (coshz(k(z+ H)) + sinh? (k(z + H))) dz.  (6.45)

cosh?(kH) R

~~

M

Term (I) can be written in an exponential form as

ok(+H) | pk(z+H)\2 ¢ ok(z+H) _ pk(z+H)
@M= + )
2 2
Q2k(z+H) | p2k(z+H)

=2 ,
4

=cosh(2k(z + H)),
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which results

. aZng fO
Ex=—-—-—"— cosh(2k(z + H)) dz,
K 4cosh?(kH)c? J-H

0

’

B azg2 p (sinh(Zk(z+H)))
-H

"~ 4c? cosh?(kH) 2k

P azgzk sinh(2kH)
8 w? cosh?(kH)’

Applying the solution 6.36, we have

14 a’g sinh(2kH)
8

Fr = ,
K sinh(kH) cosh(kH)

3 pa’g sinh(2k H)
"8 cosh(kH)sinh(kH)’

_ pa’g 2sinh(2kH)
~ 8 sinh(kH)’

2
— _pa’g
Ex = .
K=y

(6.46)

Now, the potential energy per unit of surface area during a wave period may

be expressed as

1 rTpm
Ep=—f f pgzdz dt.
T Jo Jo

(6.47)

By the integration equation 6:47 with respect to z and using the expression of

7 (equation 6.26), we find that

N\ 1 T 2
Ep=—f pgz
T Jo 2

n
ds,
0

1 T 2
:_f PEM 44
T Jo 2

1 T 2
= —f psa cosz(kixi —wt) dt
T Jo 2

Applying the time average (Equation 6.44) and solving the integral, similar to

the case when obtaining equation 6.45, the potential energy is

— 1 (pgaz) T pga®
Bp=— L
T\ 2 2 4

(6.48)
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Figure 6.12 Mean horizontal flow
associated to stokes drift under a
periodic surface wave.

As observed, assuming that the wave is not damped, the mean wave energy
along one wave period is equally partitioned between potential and kinetic ener-
gies.

Combining the equations 6.46 and 6.48, the mean total energy per unit area
(J/m?) is given by
B = &“2,

2

As the wave propagates, its energy is transported. Thus, the wave energy flux
through a vertical plane of units of width perpendicular to the wave direction can
be obtained through the energy equation. Now we leave it as an exercise to show
that the rate of flux energy is given by

(6.49)

(6.50)

7,- P84

2 c( 2kH )
2 2
——

1
sinh(2kH) J

Vv
Wave energy  wave energy velocity

The field velocity obtained in 6.37 predicts that the particle path is closed
(Figure 6.11), which means that the particles return to their original position after
wave evolution, and consequently the wave does not transport mass, just energy
(Equation 6.50). This is observed since we linearized our problem and assumed
that n = 0. However, water particles in the wave crest travel faster than at great
depths, so we observe a small net forward movement, which is called Stokes drift.

6.1.4 Stokes drift

The strokes drift is a small forward net movement induced by wave propagation,
which decreases exponentially with higher depths (Figure 6.12). Since we lin-
earized the governing equations in Section 6.1.1 (a/ H <« 1), we neglected the
contribution of the horizontal velocity near the wave crest. Taking into account a
small displacement of the fluid parcel from the mean position due to the Stokes
drift, the magnitude of the net drift can easily be estimated. Applying a Tay-
lor expansion around the mean position of the horizontal velocity component
(equation 6.37a), we have the following.

ou
+Zs_

, 6.51
3z (6.51)

X,z

ou
Usg(x+ x5, 2+ z5) = u(x,2) + X 6_
X

X,Z

in which x; and z; are the small net displacements in the horizontal and vertical
directions as a result of the Stokes drift, respectively. Both displacements can be
obtained through the integration in time of equations 6.37:

Xs(x,2, 1) =— kg cosh(k(z + H)) sin(kx—wt) (6.52a)
sHHL=" 2 cosh(kH) ’ '
zs(x,z, 1) = akg sinh(k(z + H)) cos(kx—wt), (6.52b)

w?  cosh(kH)
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assuming that w? is defined by the dispersion relation 6.36, the system 6.52
reduces to

( t) —— w ll‘l(k — t) (6 53 )

Xs(x,z,t) =—a Sinh(cH) S xX—wt), .5b3a
3 sinh(k(z + H))

zs(x,z,t)=a Sinh(CH) cos(kx—wt). (6.53b)

Applying the horizontal velocity 6.37a to the expansion defined in equation
6.51 and the horizontal and vertical displacement determined in 6.53, we may
obtain the following.

B agk cosh(k(z+ H)) cos(kx—wb) + azkzg 1
T w cosh(kH) cosh(kH)sinh(kH)

Us
cosh?(k(z + H))sin?(kx — wt) + sinh? (k(z + H)) cos? (kx — a)t))

Taking the average over a wave period, we find that

a’k’g
Us = :
w sinh(2kH)

cosh?(k(z + H)) + sinh®(k(z + H)))

a’k?g cosh(2k(z +H))
us = . )
w sinh(2k H)

in which u, expresses the Stokes drift velocity (Figure 6.12).

(6.54)

6.1.5 Kelvin waves

Figure 6.14 Kelvin wave.

Kelvin wave is a large-scale (low-frequency) trapped gravity wave affected
by Earth’s rotation that propagates in a shallow-water system, presenting an
exponential decay away from the boundaries (Figure 6.14). The Kelvin wave
balances the Coriolis force against a topographic boundary, moving equatorward
and poleward along the western and eastern boundaries, respectively (Figure
6.13). In a closed basin, the Kelvin wave propagates cyclonically with a typical
amphidromic structure.

Figure 6.13 Amphidromic system

William Thomson (Baron Kelvin)
(1824-1907, British) was born in Belfast.
He was a mathematical physicist and
engineer. Due to his achievements in
thermodynamics and of his opposition
to Irish Home Rule, he became Baron
Kelvin. He was the pioneer of vortex
dynamic (Kelvin-Helmholtz instabilities)
and has also determined the correct
value of absolute zero (the lower limit

to temperature). This absolute scale

is known today as the Kelvin thermo-
dynamic temperature scale in honor of
him. Baron Kelvin was the first to identify
the large-scale trapped gravity wave af-
fected by Earth’s rotation (now known as
Kelvin waves).
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Kelvin waves in the equator

There is a special type of Kelvin
wave, defined as the equatorial
Kelvin wave, that is trapped close
to the equator. The balances of
Coriolis forces from both hemi-
spheres act analogously as a topo-
graphic boundary.

The mathematical solution is simi-
lar to that derived from the Kelvin
waves (coastal Kelvin wave). How-
ever, since the Coriolis frequency
is zero (f = 0) in the equator, equa-
tion 6.109 must be parameterized
by an artificial coefficient.

Table 6.5 Equatorial Kelvin wave.

Poicaré wave

Another type of wave affected

by the Coriolis effect is Poicaré
waves. Unlike the Kelvin wave, the
Poicaré wave is dispersive and has
a phase velocity different from

the waves that are not affected by
Coriolis.

To obtain the solution for Poicaré
waves, assume conditions simi-
lar to Kelvin waves, but assume
that the deflection due to the Cori-
olis force induces a velocity in
y-direction.

Table 6.6 Poicaré waves.

The water is deflected by the rotation of the Earth through the Coriolis force,
which deflects the wave. However, due to the topography boundaries, the water
portion is piled up on the boundary.

Mathematically, we can obtain the solution of Kelvin waves taking into ac-
count the Coriolis force from 2.46.

(6”i+u-a”i)— 9P | ogi—20ei@u (6.55)
€\ a7 Tox; )~ l_ 08i —20€;jkWj U )

Recall that the second term of 6.55 can be neglected by a linearization pro-
cedure, assuming that the wavelength is much larger than the amplitude of the
wave (a <« A). This simplification reduces equation 6.55 to

Oui __10P @ i oei i (6.56)
L o —2c: Wl )
ot 0 P) X 8i ijkW ik

Assuming the coordinate system as shown in Figure 6.14, we see that 6.56 can

be simplified as

=0
0 10P =0
Eg = 5y te ol (6.57b)
=0
.
t - poz g (6.57¢)

Note that the velocity in y — direction is zero at the boundaries and the accel-
eration in z direction is neglected.
Assuming a general solution of ) = a(y) exp~!**~“? from 6.57cc, we have

opP bottom
=, = 08 f dP =-pg(—H—-n) =pg(H+mn) (6.58)
0z surface

From 6.58, 6.57a can be reduced to

ou : on (6.59)
ot~ Sox ‘
Taking 6.57b in time and applying 6.59 and 6.58 to it and assuming the general
solution of 1, give us

o0P__,pou

aroy  %%;

99 _ .00

dy ot ’ ox

9
iw%:—ikfa(y)
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0
a(y) N ia(y) —o,
o0y Cp
in which ¢, = w/k. This equation is a differential equation that can be solved by
separation, which results in

f

n=a,exp @’

eXp—i(kx—a)t) (660)

Applying 6.59 to the mass conservation equation and assuming that the ver-
tical velocity w is approximated by the surface velocity of the water pointing
upward, we can find the wave equation, similar to that found in table 6.3, consid-
ering the shallow water solution:

bottom -H ou
f dw = f —dz
surface n=0 0x

ou
— Wsurface = _a -H

on ou

- - :0

ot " ox
%n %n

The partial differential equation 6.61 can be solved by applying the general
solution of 6.60. Note that the partial differential equation is independent of the
variable y, indicating that the phase velocity of the Kelvin waves is the same as
that for the non-rotating case.

The influence of rotation is limited to the new term 6.60 (exp_éy ). The flc,
is known as the Rossby radius of deformation Lg and describes the length scale
at which the Coriolis effect becomes important in wave motion. In the ocean,
Lp is strongly affected by latitude and depth of water, varying from 10 km in
high-latitude regions to more than 2000 km in the deep sea near the equator.

6.2 Interfacial wave in a two-layer system

Interfacial waves are generalizations of free surface waves that have been studied
in the previous section. Instead of free surface waves, where the upper layer is
air (or any lighter fluid compared to the fluid above), we now consider that both
fluids have comparable densities.
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Figure 6.15 Interfacial wave in a bounded system.

Although interfacial waves do not represent the continuous stratification of a
natural environment, they remain a good approximation of density structure in
many situations. We start our analysis by considering a two-layer system made
up of two immiscible fluids (Figure 6.15). As a first example, we consider the
hydrostatic approximation, valid only when the horizontal scale is large compared
to depth, characterizing a shallow-water solution (similar solution discussed in
Table 6.3).

6.2.1 Solution for shallow water

Based on the situation depicted in figure 6.15, our first step is to derive for each
layer the governing equations for nonrotating shallow-water flow:

Oug 1 0P

-5 6.62
ot os 0x (6.62a)
oy 1 0P,
= =% _ . 6.62b
ot p,0z ¢ (6.62b)
Ous , Ows _ (6.620)
ox 0z ‘

where the subscript s indicates the layer, where s = 1 and s = 2 represent the
upper and lower layer, respectively. We neglect w; from the momentum equation
for z-direction, which results in a hydrostatic approximation.

The displacement of the interface between fluids 1 and 2 is given by the
sinusoidal wave shape with wave number k, and angular frequency w, (similar
to the one used to describe surface waves in 6.27):

(o(x, 1) = a; elke¥2) (6.63)

in which a; is the amplitude of the interfacial wave. Note that the water surface is
also free to oscillate. Therefore, we can also represent the surface displacement
by a sinusoidal function 7;:

(1(x, 1) = ap elfied), (6.64)
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in which a, is the amplitude of the surface wave.

Since the dynamic does not influence the pressure in z — direction (w = 0),
we obtain from equation 6.62b that the pressure distribution in each layer is given
by the hydrostatic pressure for each layer:

Pi(x,2,t) =p18((1 — 2) (r=z=(, (6.65)

Py(x,2,1) = p18({1—{2) + p28(=2+{>2) —-H=z=<{,, (6.66)

in which H = H + H, is the total water depth.
Applying equations 6.65 and 6.66 to 6.62a, give

ouy _ 01

Fral gax (6.67a)
ouy p1 _01—( 0
L2 22 g 2% 6.67b
ot ng 0x § 0x ( )

Combining the two equations, assuming i = u, — #; and neglecting surface
displacement ({; = 0), we have the following.

oi__ Mol __ ot

= . 6.68
ot & 02 0x § 0x ( )

The second equation can be found by combining the mass conservation
equations of each layer. Thus, assuming that &i = uy — u; and {; =0, we find the

following.
—]’ll _hl a
f dw, £ f 9 4z (6.692)
0 0 (3x
-H -Hp
diby = — f 9% 4z (6.69b)
-1y - 0x
001 0, ouy
%1 %2 _ _, 01 6.70
ot ot ox (6.702)
6(2 6u2 auz
__:——H-|—h —:h— 670b
or D5y ~hegy (6.70b)

@__(_hl”u)% 6.71)

ox i hy )or
Combining equations 6.71 and 6.68, we have the partial differential equation
for a shallow-water interfacial wave:

52 0
g 62:0, (6.72)

oz 81552

in which g’ = Ap/p; is the reduced gravity and H = h; h,/H is the relative depth
of the water.
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Figure 6.16 Italian lamp made in
an empty glass jar, filled with oil
and water

Note that the interfacial displacement {» (x, ) used here is a function defined
from the upper boundary, where x = 0. However, to define the interfacial dis-
placement as described by 6.64, we must consider { ;—¢ = {;=_,, — h1. Applying (>
to the partial differential equation 6.72 and deriving it from ¢ and x, we find that

Ch = /M (6.73)
P § h1+h2, '

where c), is the phase speed of propagation of the baroclinic mode in a shallow
water system. This result is a generalization of the result from the free surface
wave (Equation 6.40). Because g’ < g, interfacial waves are much slower than
surface waves, resulting in much longer periods.

We may derive the phase velocity 6.73 to obtain the period of the interfacial
wave T. Assuming that ¢, = w/k, we may find that

w 2nfA A
= —= =fAl=—;
DT o AT
A
T=— (6.74)
Cp

One of the first observation of internal waves was noted by Benjamin Franklin
during an expedition to Madeira in 1761. He noted that when his boat began to
roll, waves formed in his Italian lamp made in an empty glass jar filled with oil
and water (Figure 6.16). However, the waves were not on top; the surface of the
oil was quiet. He noted that waves formed between the water and the oil.

The first scientific observations of internal waves in the natural environment
were made-by Nansen (1897) during an expedition to the North Pole in 1893.
Nansen felt an extra drag on his boat due to internal waves, which slowed his boat
to a quarter of its normal speed.

“Fram appeared to be held back, as if by some mysterious force,
and she did not always answer the helm. In calm weather,
with a light cargo, Fram was capable of 6 to 7 knots.

When in dead water she was unable

to make 1.5 knots'.”

E Nansen (1897)

Ekman (1904) was the first to provide a reasonable interpretation of the phe-
nomenon. In the preface to Ekman’s paper, Bjerknes said:

“The present investigation of “Dead-Water” was occasioned by a letter in November
1898 from Prof. NANSEN asking my opinion on the subject. In my reply to Prof.
NANSEN I remarked that in the case of a layer of fresh water resting on the top of
salt water, a ship will not only produce the ordinary visible waves at the boundary

I The knot is a unit of speed equal to one nautical mile per hour, 1 knot = 1.852 km/h
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between the water and the air, but will also generate invisible waves at the
salt-water fresh-water boundary below; I suggested that the great resistance
experienced by the ship was due to the work done in generating these invisible
waves.”

Vagn Walfrid Ekman (1904)

He explained that energy from the ship is transmitted to internal waves, which
occur between layers of different densities. The boat experiences an important
loss of steering power and consequently the speed of the ship decreases dramati-
cally. He supported this claim with several laboratory experiments.

Equation 6.73 has been derived from the hydrostatic condition, which con-
siders that the pressure is given only by the hydrostatic contribution. This ap-
proximation neglects the vertical momentum by taking the contribution of the
vertical velocity. This results in a non-dispersive solution, which is valid only
for shallow-water waves, when A > H. Although this is a good approximation
in many large-scale motions (large internal waves), those waves may also be
susceptible to non-hydrostatic effects, which usually rise at a minimum grid
scale (Wadzuk, Hodges, 2004), where the nonlinear effect could also be impor-
tant. Often, the hydrostatic approximation fails at open boundaries (), at steep
slopes (), and when linear motions degenerate into high-frequency waves (Horn
etal., 1998, 2001). Although non-hydrostatic flows often behave also non-linearly,
in the next section we ignore non-linear effects and take into account just the
non-hydrostatic contribution.

6.2.2 Non-hydrostatic solution

Now we solve the previous problem assuming a non-hydrostatic solution, which
is similar to the approach used to find the solution for surface waves in Section
6.1.1.

According to Kelvin’s circulation theorem, since we assume that each layer
has a homogeneous density (Figure 6.15), the viscous effects are ignored and
the Coriolis force neglected. Considering that the result motion for each layer is
irrotational, an independent velocity potential (equation 2.42) can be defined in
each layer. Rewrite the mass conservation equation 6.62c for the direction x — z
as Laplace equation for each layer, which gives us

0*p1 0%y
55t 5 =0 (6.75a)
0*py 0%y
—r< =0, 6.75b
0x2 * 0z2 ( )

in which equations 6.75 refer to mass conservation in the upper and lower layers,
respectively. For a cosine dependence, the potential velocities ¢; and ¢, that
satisfy the Laplace equations 6.75 are, respectively, of the form

b1(x,2,1) = fi(z) el *¥=D) (6.76a)
B2(x,2, 1) = fo(z) e!FF=0D, (6.76b)
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Substituting equations 6.76 into the Laplace equation gives us a second-
order linear homogeneous differential equation with two linearly independent
solutions. The general solution assumes the following form:

filz)=Ci e+, e, (6.77)
flz)=Csef*+c e (6.77b)

in which the constants C;, C», C3, and C4 can be determined from the boundary
conditions.

Assuming that the coordinate system is referenced (z = 0)-at the upper layer
boundary, we have the following:

V1 - filz=0 = 0, (6.782)
Vb2 Alze—py = 0, (6.78b)

inwhich H = h; + hy.
Applying the general solution 6.76a in the rigid upper condition 6.78a gives
C1 = Gy, in which Cs can be obtained from the boundary condition at the bottom
6.78b:
992

=0 C3=C, ek, (6.79)
0z z=—H

We can obtain a new relation between coefficient C; and C, using the kine-
matic boundary condition at the interface for the upper layer. The boundary
condition at the interface between the two fluids must be satisfied for such a wave
to move (similarly to that obtained from surface waves 6.10), so in this case we
have the following.

{x2 - xlyo’((xz’ t?_) _((xlr tl)} = At{u.ﬁ Us, ws}; (680)

in'which 7 is the interfacial wave function and s indicates the layer number.
Expanding {(x, f») in a Taylor series, we have the following.

0¢(x1, )

o (6.81)

((x2, 1) = {(x1, £2) + (X2 — Xx1)

which can be easily applied to equation 6.80. From z component, we have

((x1, ) —C(x1, 11) N Ax ol _
At At ox

S

inwhich Ax/At = us and t, — t;, with the result that

o, o3

&+us o~ o2 onz={_(x,1). (6.82)

Now we apply a linearization procedure, which assumes that the interfacial
wave has a small amplitude compared to the wavelength (b < 1). Here, we
do not show that nonlinear terms have &(b/1). A detailed procedure can be
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performed by dimensional analysis, similar to that applied to surface waves in
section 6.12. The linearization procedure leads to a linear form of the equation
6.82 by neglecting the second term on the left side.

Note that the equation is evaluated at z = {(x, t). So, assuming a lineariza-
tion, we can simplify the term expanding in a Taylor series around z = —h; and
neglecting the higher-order terms. Thus, the kinematic boundary condition for
both layers at the interface becomes the following.

d¢ps s
62 z=—I 6t

(6.83)

Assuming that the interfacial displacement is represented by the sinusoidal
wave form 6.64, and applying the general solution 6.76a in the kinematic bound-
ary conditions 6.83 for the upper and lower layers, give us the following.

ibw 1
C1 = Cz = - X e—kh1 ~ ekh1 , (6.84a)
C,= ibw 1 b
4T Tk e2kH g-khy _ gkhy’ (6.84b)
where C3 can be obtained from 6.79,
ibw e2kH
C3=-— (6.85)

k o2kH o—khi _ okh

The last two boundary conditions come from the momentum equation in
z-direction and are known as the dynamic boundary condition. Assuming an
inviscid and irrotational flow, we obtain the unsteady Bernoulli equation.

0 2+ 2
0ps . (M + Pyt pegzs = F(D), (6.86)

Ps75¢ 2

which is constant along a streamline. F(f) can be absorbed by the potential
velocity, since it is just a function of ¢. Equation 6.86 can be applied to the
interfacial wave function (z = ().

Assuming small-amplitude surface waves (b <« A1), the nonlinear kinetic en-
ergy term can be neglected in equation 6.86. Since we are assuming that the wave
has a small amplitude, we can expand the equation in a Taylor series around
z = —h, (equilibrium position) and neglect higher-order terms. Finally, we have

d

- +psg{ = F(1). (6.87)

Z:—hl

Selecting the fluid interface as the streamline and applying the unsteady
Bernoulli equation to it gives the following.

Apgl. 6.88
p1 o 27%; +Apgl (6.88)

Z:—I’ll

Z:—]’l]
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Substitution of equations 6.84, 6.85, 6.76, and 6.77 into equation 6.88 gives us
the dispersion relation:

(e‘kh1 +ekm ) N (e"h2 + e‘khz) kgAp
|\ | T P2 =
PU Sk o=k | T P2\ "ok, _ okt 02

9 tanh(kh;) tanh(kh,)
w =Apgk (6.89)
p2 tanh(kh;) + p; tanh(khy)

The dispersion relation 6.89 describes the propagation of a small-amplitude
interfacial wave, in which the second order in w indicates that the wave travels
with a single speed but in two directions. The difference from that obtained
for shallow waters (equation 6.73) is that the dispersion relation 6.89 is a gen-
eralization of the hydrostatic solution, which describes the evolution of just
non-dispersive interfacial waves.

Often large-amplitude propagating internal waves are accompanied by sur-
face waves or ripple patterns at the water surface due to the nonlinear effects
of internal waves (Hutter et al., 2011). In oceans and large lakes, these ripple
patterns increase the roughness of the surface of the water, allowing detection
by SAR images 6.17. Due to the alternating pattern of quasiperiodic bright and
dark bands against a gray background caused by the ripple patters created on
the water surface, SAR images can detect the surface variation, which is directly
correlated to the propagation of internal waves. In medium to small lakes, the
small image resolution prevents the detection of high-frequency internal waves
by SAR images. In‘large closed basins, standing internal waves (discussed in more
detail in Section 7.1) can be detected by oscillations at the water surface. Lemmin
et al. (2005) analyzed large-internal waves in lakes through surface-level variation;
often surface waves associated with internal waves are typically 100 to 1000 times
smaller than internal waves, depending on the density gradient.

Facket of internal solitary waves

Figure 6.17 SAR image from the Gulf of Maine west of Cape Cod on 3 July
2008, at 22:26. The image shows the signatures of the internal wave packets.
Assembled from (?)
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A nonhydrostatic solution for an open upper boundary can be obtained
similar to the one obtained previously for interfacial waves in section 22.

The solution of this problem is left to the reader to solve. After working
through the algebra and assuming the non-hydrostatic case, the dispersion rela-
tion for an open boundary condition is given by

2 _ g
2B, T+1)

in which §, = p1/02, 'y = tanh(k hy), I'; = tanh(k hp), andI' =T I',.

Note that the dispersion relation 6.90 provides four solutions of four orders
in w. The solution can be grouped into two modes, each group allowing the
wave to travel in two directions. The wave modes are distinguished by the wave
period but have many other differences in the wave property. The solution of a
shorter period describes the barotropic mode, where the wave on the surface of
the water is greater than the interfacial wave (Figure 6.18). Because the density
difference in the interior of the water is very small compared to the water-air
density difference, the internal waves have lower velocities and longer periods
than the surface waves. Due to the effect of reduced gravity across the water body,
surface waves travel more than 50 times faster than the speed of internal waves.

Az

((F1 +Io) £ \/(F1 +17)2 +4T(Bp T =1)(Bp— 1)}, (6.90)

barotropic mode baroclinic mode

Figure 6.18 Surface and internal waves in barotropic and baroclinic mode.

The barotropic mode, also called the external, fast, and sinuous mode, has
isobars parallel to isopycnals, lines of equal water density. The motion of the water
behaves as if the water body is not stratified, presenting an in-phase response
between the internal and surface waves (Figure 6.18).

The longer-period solution describes the baroclinic mode, which is also called
the internal, slow, and varicose mode. The baroclinic mode has internal waves
with amplitudes larger than those of surface waves (Figure 6.18). In this case, the
isopycnals and isobars are inclined to each other, and the angle of this inclination
depends on the stratification profile.

6.2.3 Interfacial wave energy

We may estimate the energy of internal seiches similarly to what we estimated in
section ?? for surface waves, combining the contribution of kinetic and potential
energies.

Assuming that the wave energy is equally partitioned between potential and
kinetic energies along one wave cycle, the averaged kinetic energy of the internal
wave can be defined as

8= These solution is left for
reader to solve. See exer-
cises 6.7 and 6.8.
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baroclinic mode

Figure 6.20 Barotropic and baro-
clininc modes for seiche waves in
a closed basin.

1 T pVv 2
Fy = f f PY 4v s, 6.91)
TvimiJo Jo 2

in which

6.2.4 Interfacial seiche

In stratified closed basins, the wind that acts on the surface of the water favors
the formation not only of a standing surface wave, but also a standing interfa-
cial wave, which often has a wavelength comparable to the length of the lake
(Mortimer, 1952). The wind introduces kinetic energy to the surface of the water.
The transfer of momentum caused by wind stress pushes the surface water to
the leeward shore, causing a surface displacement, called wind set-up. If wind
stress is applied for a sufficient time, the horizontal pressure gradient increases
and hypolimnion water accelerates in the upwind direction. Consequently, the
hypolimnion and epilimnion layers are tilted, as shown in Figure 6.19. When the
wind stops, the tilted layers flow back towards equilibrium. However, the mo-
mentum is considerable, and the equilibrium is overshot, resulting in a rocking
motion about nodal points.

Figure 6.19 Sketch of a standing interfacial wave for the baroclininc mode
formed a two-layer system.

Similarly to propagating waves, seiche can be classified as barotropic or baro-
clinic depending on the most dominant wave excited (Figure 6.20). The modes
have properties similar to those described for propagating waves. The baro-
clinic mode has a higher internal amplitude compared to the surface amplitude,
presenting an out-of-phase response.

Internal seiche in lakes has been observed primarily by (Thoulet, 1894) who
observed a temperature oscillation with higher amplitude at middle depths. How-
ever, the first right interpretation was provided by Watson (1903) during a field
campaign in Lake Loch Ness, which reported:

“I concluded from these observations, and others taken at different parts of the
loch, that is an internal oscillation in the water — an internal seiche (...)”
E.R. Watson (1903).

Watson (1903) gave the first correct interpretation of internal waves, conclud-
ing that this temperature oscillation was caused by a uninodal baroclinc internal
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wave in Lake Loch Ness. Motivated by his earlier observations, Watson (1904)
developed the first equation to determine the internal wave period, a hydrostatic
solution for a rectangular basin, known as Watson’s equation (adapted Merian’s
equation). He observed that the periods of these oscillations found fair agreement
between the observed and calculated periods. In those early years, Wedderburn
and colleagues (Wedderburn, Williams, 1911; Wedderburn, 1912; Wedderburn,
Young, 1915) provided guidelines to spread the knowledge about internal seiches
in stratified basins that he called internal as "temperature seiches".

Although Wedderburn has notable improvements in theory and observations
of internal seiches in closed basins, many limnologists disbelieved that internal
waves could be important or even exist within thermal stratified lakes. The phe-
nomenon was doubted until 1952, when finally Mortimer (1952) demonstrated
its universality and importance in detail. He investigated the formation of large
internal seiches generated by wind forcing in Lake Windermere analyzing a long
time series of measurements with moored thermistor chains. In theisotherm
analysis, Mortimer (1952) observed an internal seiche with periods of 18 h to 19 h
that was well represented by the Watson’s formula (deviation lower than 5%). He
concluded that one of the main effects of the wind action in stratified basins is to
generate internal seiches.

Mortimer had worked extensively on internal waves, providing many infor-
mation about the physical processes of internal waves in lakes and reservoirs
(Mortimer, 1950; 2, 1952, 1953, 1955, 1971, 1979, 2004).

The evolution of internal seiches has been detected through temperature mea-
surements () and field velocity data sets ().- The oscillatory motion due to internal
seiche, which most of the time is hidden by other fluctuations, is often reveled
through the power spectral density obtained from Welch’s methods (Welch, 1967),
explained in detail in Chapter 5.5.1.

Due to the out-of-phase response between surface and internal waves during
baroclininc modes, studies have detected large internal waves in lakes through
surface level variation (Lemmin et al., 2005). Lemmin, D’Adamo (1997) Winds
from the northeast were responsible for the generation of a large internal seiche
with an amplitude of approximately 20 meters.

The mathematical solution for internal seiches is quite similar to that de-
scribed in Sections 6.2.1 and 6.2.2 for propagating interfacial waves, with the
exception that in a close basin, a new boundary condition is applied to describe
wave reflection on the basin shore. Since the end wall of the basin allows the
wave to move freely in the vertical direction, the wave is reflected pointing in the
same direction, which means that an upward displaced pulse will also generate a
reflected wave pointing upward (Figure 6.21).

Clifford H. Mortimer (1911-2010,
British) was born in Bristol (England).
He was a zoologist and geneticist. Dur-
ing the Second World War, he was re-
cruited to work in the Oceanographic
Group of the Admiralty Research Labo-
ratory, where we have gained sufficient
knowledge in dynamic oceanography.
Mortimer was elected to Royal Soci-
ety, London and lifetime membership
of the American Society of Limnology
and Oceanography (ASLO). He worked
extensively to interpret the physical pro-
cesses that lie behind the lakes’ data.
His papers and books are landmarks in
the understanding of the dynamics of
internal waves.
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Trigonometric and Hyperbolic
functions

The trigonometric and hyperbolic
functions can be obtained assum-
ing the following relations:

el =cosx+isinx, (6.93a)
e’ =coshx+isinhx, (6.93b)

resulting in
) eix _ e—ix
sinx = ——, (6.94a)
20
eix + e—ix
oS X = ————, (6.94b)
ef—e™*
sinhx = P , (6.94¢)
X + =X
coshx= - ¢ (6.94d)

Table 6.7 Trigonometric functions
in terms of exponential functions.

Cixt)=Tixt)
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Figure 6.21 Standing interfacial wave formed by a superposition between
interfacial waves ¢’ and {”. Unlike Figure 6.19, the standing wave formed
here has four nodes formed by two waves traveling on the right side of the
tank and two reflected waves traveling in the opposite direction. Although
fundamental internal seiche is often observed in lakes and reservoirs (Fig-
ure 6.19), higher horizontal baroclinic modes are also susceptible to being
excited in stratified basins. Note that the superposition doubles the wave
amplitude a;.

The wave superposition modify the sinusoidal wave form 6.64. For a finite-
sized longitudinal region, the wave is confined within the system, and the wave
form must be described by a superposition of wave modes. This occurs only at
certain frequencies and can be obtained from the trigonometric functions as

C(x; f) :(I+(H = a; ei(kx—wt) +a; ei(—kx—wt)’

(6, 1) = a; (€5 +e7 k%) g7 = pg; ellkx—wD), (6.92)

in which ¢’ and ¢” are waves traveling in opposite directions. a; is the wave
amplitude of ¢’ and {"’. Note that the constructive superposition between waves
(" and (" displaces an amount equal to twice the wave amplitude, A; =2 a;.

Taking into account the effect of lateral boundaries, the interfacial wave has
maximum vertical displacement when

((x=0,0)={(x=L,1)=A;, (6.95)

in which L is the basin length and A; is the wave amplitude (maximum vertical
displacement assuming the wave form 6.92. From the wave form 6.92, the bound-
ary conditions 6.95, and considering that the wave number is defined as k =27/,
where A is the wavelength, we obtain the condition for the standing wave:

27mx

cos— e
A

—iwt

=1. (6.96)
x=0,L

Note that the only way to satisfy always the condition 6.96 is when

27X

1 =mrm, (6.97)

x=0,L

inwhichm=1,2,3,4,... (n,2n,31,4n,...).
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Finally, by rearranging, we find that

2L
1=, (6.98)
m

in which fundamental interfacial seiche (Figure 6.19) is always generated for
m = 1. For higher horizontal modes, the wave length is shorter, resulting in higher
m values. Figure 6.21 has m = 4 (four nodes).

Applying condition 6.98 to some general solution of the propagating wave, we
get the solution for standing internal waves. For example, assuming the interfacial
period obtained from the hydrostatic solution 6.74 (T) and applying the condition

6.98 gives us the following.
A 2L
T = — = ,
cp mcp

(6.99)

in which L is the basin length and ¢, is the phase speed of the internal seiche.

Note that the length of the basin for the internal seiche L depicted in Figure 6.21
is easily represented by the length of the basin at the water surface. However,
increasing the complexity of the bathymetry (Figure 6.19), the basin length is
not easily defined. In this case, the basin length L must be defined taking into
account the depth in which the interfacial seiche is excited.

6.2.5 Fundamental internal seiche amplitude

The wave amplitude of the fundamental internal seiche may be estimated for
the idealized two-layer rectangular box tank through the governing equation of
motion, more specifically using the momentum equation for x-direction in a
non-rotating frame of reference assuming shallow waters. We assume that the
basin has only two layers and that the system is forced by an instantaneous wind
shear stress (Figure 6.22). This model scheme is similar to the model derived in
Section 6.2.1, but here we take into account the contribution of the wind stress
u, to the water surface.

(. t)

Gl 1)

L

Figure 6.22 Stable two-layer system (p, > p;) in a rectangular basin. The
vertical coordinate is positive above the water surface. H is the thickness of
the equilibrium layer, while £ is the thickness of the local layer.  and ¢ de-
scribe the interfacial movement between two fluids with different densities
(referenced from z = 0).
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Firstly we must derive the momentum equation in a non-rotating frame of
reference for shallow-water waves. Basically, the solution is derived from the
two-layer model.

The pressure distribution along the water column within each layer is as
follows:

Pi(x,z,t) = p18(—-z+1), (6.100a)
Py(x,z,1) = p1g(M—0) +p28(-z+(), (6.100b)

in which P is the hydrostatic pressure, p is the fluid density, g is the acceleration
of gravity, and n and { are the interfacial displacement of the surface and internal
wave, respectively.

The momentum equation for x-direction can be applied for each layer (equa-
tion 6.62a). Unlike Equation 6.62a, an additional term is added on the right side
accounting for the contribution of the wind stress u. to the water surface.

6u1 1 6P1 ui

A _ XD | 2 6.101
ot p1 0x * H; ( a)
6u2 1 6P2
e ___ "2 6.101b
ot p2 0x ( )

where u is the horizontal velocity and H; is the thickness of the equilibrium upper
layer.
Substituting equations 6.100 into 6.101 gives:

ou _ _ On  u, (6.102a)
ot Sox ' H, '
0us __p1 00 _pa-p O

- 6.102b
ot p2° 0x 02 0x ( )

Let us write equation 6.102 in a more compact form, assuming that n = {,:

ou; o u?

—L =g A L6, 6.103

ot § M 0x H,; i ( )
in which ;1 = 1 only for i = 1, in all other cases §;; = 0. The matrix A; ; is defined
as:

1 0
A;i= 6.104
b (Pl/Pz AP/Pz) ( )

We can also apply the mass conservation equation 6.62c for each layer:

0 6u1

5(,7_() =—H—, (6.105a)

%((_H) =~Hy—~. (6.105b)
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Rearranging the equations 6.105a and 6.105b, we find the following.
Jup 1 0n 140

N . 6.106
ox  H, 0t Hor (6.1062)
6u2 1 0(
—_—=——, 6.106b
0x H, ot ( )
which can also be written in a more compact form, as
6ul~ 6(]
U __p 2 6.107
0x Yot (6107
where n = {, and B; j is:
_(V/H -1/H,
B, _( 0 —1/H2) (6.108)

Note that the derivation of equations 6.103 in x and 6.107 in time and the
combination of both solutions give us the following result.

02 . A 02 .
J, i 0¢) =0, (6.109)

0r? & Bi,j 0x?

which is similar to Equation 6.72. It is important to note that since wind stress
does not vary along the horizontal plane direction, wind does not play any role in
the internal wave speed. Shear stress only influences internal seiche growth.

Assuming that the horizontal velocity is zero when the interface present
maximum vertical displacement, the expressions for the first two layers are as
follows.

on  u?
— = , (6.110a)
0x 14 H;
on o¢
— =—(p2— —. 6.110b
pro =~ p2—pVg ( )
Combining the equations 6.110a and 6.110b, we find
o Ap o  ui
ox p1 0x B g H
o 2 2
_{—_&ﬁ _L (6.111)

ox  gAp Hi g Hi'
in which ( is the internal seiche displacement (assuming the internal seiche mode
of VIH1), g’ is the reduced gravity, u, is the wind stress and H; is the thickness
of the equilibrium upper layer. Note that the negative sign in equation 6.111 is
related to the sign convention.
Integrating equation 6.111 and applying the lateral boundary conditions:

Al(x=LI2)=ay (6.112a)
Al(x=0)=0, (6.112b)
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in which ay is the initial internal seiche amplitude and L is the lake length (L =0
is located in the lake center), we find that

g H
0.5 u: L (6.113)
az =0. . .
’ g H
Multiplying both sides of 6.113 by 1/ H;, we get
1
2w, (6.114)
H 2

in which W is the Wedderburn number. By compassion, we may state that for
W =1, a, = H;, which indicates that metalimnetic water will increase to the
surface. For higher values of W (in the literature, we may consider W > 30), the
system is too stable to generate a large vertical displacement. We may observe
that assuming W = 30, the vertical displacement would be of the order of 1% of
the thickness of the epilimnion.

6.2.6 Interfacial seiche affected by Earth’s rotation

Similarly to surface waves (Section 6.1.5), interfacial waves may also be affected by
Earth’s rotation, generating internal Kelvin and Poincaré waves. The geostrophic
force is balanced by the adjustment of the pressure and velocity fields. When
the system has lateral boundaries, the flow is trapped by the lateral boundaries,
which strongly influence the velocity fields.

The Coriolis force is proportional to the speed of Earth’s rotation, which may
vary depending on the latitude due to circumference of the Earth. At the equator,
the velocity is higher than near the poles, indicating a lower influence of the
Coriolis force. In the Arctic, even shorter waves may be influenced by Earth’s
rotation, which indicates that even small lakes are susceptible to being affected
by Coriolis forces.

Interfacial waves have another interesting behavior compared to surface
waves affected by the Coriolis force. Since they have a much smaller velocity
(higher period wave), the internal wave is more susceptible to be influenced by
Earth’s rotation (Bduerle, 1994). Studies in Lake Uberlingen, which has a length
of just a few kilometers, have identified the evolution of Poicaré internal waves
(Bduerle, 1994), one type of interfacial wave that is affected by Earth’s rotation.

To identify when the Coriolis force can affect the propagation of internal
waves, the Burger number Bu is often calculated (Antenucci, Imberger, 2003). The
Burger number is defined as the ratio of the internal Rossby radius of deformation
to a length scale L, which is often assumed to be the length of the basin. The Bu

can be written as
RR _ C p

Bu = ,
L woLp

(6.115)
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Table 6.9 Burger numbers, Bu, for some lakes and reservoirs.

Basin Latitude Bu Source

Lake Mono 38°01'N 2.07 Maclntyre et al. (2009)
Lake Babine 54° 45’ N 0.53 Farmer (1978)

Lake Kinneret 32°50’N 0.56 Antenucci et al. (2000)
Lake Zurich 47° 13’ N 0.14 Horn et al. (1986)
Alpnacher See 46° 57’ N 0.22 Miinnich et al. (1992)
Sau Reservoir 41° 58 N 2.64 Vidal et al. (2005)

in which Rg = ¢y/w, is the Rossby deformation radius, ¢ is the non-rotating
internal wave velocity, and w, = 2Qsina is the inertial frequency, where Q =
7.2921 1075 rad/s is the rotation rate of the Earth (equation 6.116) and « is the
latitude. In some cases, we approximate w, = 10™* Hz

For a Burger number larger than unity, gravity force dominates, and the
modal models described previously are fully applicable. For Burger numbers
smaller than unity, the internal waves are affected by Earth’s rotation, changing
the internal wave velocity and the lateral distribution of the wave energy (Forcat
etal., 2011). As observed, the influence of earth rotation does not depend only
on the basin spatial scale, but also on the inte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>